1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
|
//------------------------------------------------------------------------------
// GB_concat_hyper: concatenate an array of matrices into a hypersparse matrix
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
#define GB_FREE_ALL \
{ \
GB_FREE (&Wi, Wi_size) ; \
GB_FREE_WORK (&Wj, Wj_size) ; \
GB_FREE_WORK (&Wx, Wx_size) ; \
GB_phybix_free (C) ; \
}
#include "GB_concat.h"
GrB_Info GB_concat_hyper // concatenate into a hypersparse matrix
(
GrB_Matrix C, // input/output matrix for results
const bool C_iso, // if true, construct C as iso
const GB_void *cscalar, // iso value of C, if C is iso
const int64_t cnz, // # of entries in C
const GrB_Matrix *Tiles, // 2D row-major array of size m-by-n,
const GrB_Index m,
const GrB_Index n,
const int64_t *restrict Tile_rows, // size m+1
const int64_t *restrict Tile_cols, // size n+1
GB_Context Context
)
{
//--------------------------------------------------------------------------
// allocate triplet workspace to construct C as hypersparse
//--------------------------------------------------------------------------
GrB_Info info ;
GrB_Matrix A = NULL ;
ASSERT_MATRIX_OK (C, "C input to concat hyper", GB0) ;
int64_t *restrict Wi = NULL ; size_t Wi_size = 0 ;
int64_t *restrict Wj = NULL ; size_t Wj_size = 0 ;
GB_void *restrict Wx = NULL ; size_t Wx_size = 0 ;
GrB_Type ctype = C->type ;
int64_t cvlen = C->vlen ;
int64_t cvdim = C->vdim ;
bool csc = C->is_csc ;
size_t csize = ctype->size ;
GB_Type_code ccode = ctype->code ;
float hyper_switch = C->hyper_switch ;
float bitmap_switch = C->bitmap_switch ;
int sparsity_control = C->sparsity_control ;
GB_phybix_free (C) ;
Wi = GB_MALLOC (cnz, int64_t, &Wi_size) ; // becomes C->i
Wj = GB_MALLOC_WORK (cnz, int64_t, &Wj_size) ; // freed below
if (!C_iso)
{
Wx = GB_MALLOC_WORK (cnz * csize, GB_void, &Wx_size) ; // freed below
}
if (Wi == NULL || Wj == NULL || (!C_iso && Wx == NULL))
{
// out of memory
GB_FREE_ALL ;
return (GrB_OUT_OF_MEMORY) ;
}
GB_GET_NTHREADS_MAX (nthreads_max, chunk, Context) ;
int64_t nouter = csc ? n : m ;
int64_t ninner = csc ? m : n ;
//--------------------------------------------------------------------------
// concatenate all matrices into the list of triplets
//--------------------------------------------------------------------------
int64_t pC = 0 ;
for (int64_t outer = 0 ; outer < nouter ; outer++)
{
for (int64_t inner = 0 ; inner < ninner ; inner++)
{
//------------------------------------------------------------------
// get the tile A
//------------------------------------------------------------------
A = csc ? GB_TILE (Tiles, inner, outer)
: GB_TILE (Tiles, outer, inner) ;
ASSERT (!GB_ANY_PENDING_WORK (A)) ;
//------------------------------------------------------------------
// determine where to place the tile in C
//------------------------------------------------------------------
// The tile A appears in vectors cvstart:cvend-1 of C, and indices
// cistart:ciend-1.
int64_t cvstart, cistart ;
if (csc)
{
// C is held by column
// Tiles is row-major and accessed in column order
cvstart = Tile_cols [outer] ;
cistart = Tile_rows [inner] ;
}
else
{
// C is held by row
// Tiles is row-major and accessed in row order
cvstart = Tile_rows [outer] ;
cistart = Tile_cols [inner] ;
}
//------------------------------------------------------------------
// extract the tuples from tile A
//------------------------------------------------------------------
// if A is iso but C is not, extractTuples expands A->x [0] into
// all Wx [...]. If both A and C are iso, then all tiles are iso,
// and Wx is not extracted.
int64_t anz = GB_nnz (A) ;
GB_OK (GB_extractTuples (
(GrB_Index *) ((csc ? Wi : Wj) + pC),
(GrB_Index *) ((csc ? Wj : Wi) + pC),
(C_iso) ? NULL : (Wx + pC * csize),
(GrB_Index *) (&anz), ccode, A, Context)) ;
//------------------------------------------------------------------
// adjust the indices to reflect their new place in C
//------------------------------------------------------------------
int nth = GB_nthreads (anz, chunk, nthreads_max) ;
if (cistart > 0 && cvstart > 0)
{
int64_t pA ;
#pragma omp parallel for num_threads(nth) schedule(static)
for (pA = 0 ; pA < anz ; pA++)
{
Wi [pC + pA] += cistart ;
Wj [pC + pA] += cvstart ;
}
}
else if (cistart > 0)
{
int64_t pA ;
#pragma omp parallel for num_threads(nth) schedule(static)
for (pA = 0 ; pA < anz ; pA++)
{
Wi [pC + pA] += cistart ;
}
}
else if (cvstart > 0)
{
int64_t pA ;
#pragma omp parallel for num_threads(nth) schedule(static)
for (pA = 0 ; pA < anz ; pA++)
{
Wj [pC + pA] += cvstart ;
}
}
//------------------------------------------------------------------
// advance the tuple counter
//------------------------------------------------------------------
pC += anz ;
}
}
//--------------------------------------------------------------------------
// build C from the triplets
//--------------------------------------------------------------------------
const GB_void *S_input = NULL ;
if (C_iso)
{
S_input = cscalar ;
}
GB_OK (GB_builder (
C, // create C using a static or dynamic header
ctype, // C->type
cvlen, // C->vlen
cvdim, // C->vdim
csc, // C->is_csc
(int64_t **) &Wi, // Wi is C->i on output, or freed on error
&Wi_size,
(int64_t **) &Wj, // Wj, free on output
&Wj_size,
(GB_void **) &Wx, // Wx, free on output; or NULL if C is iso
&Wx_size,
false, // tuples need to be sorted
true, // no duplicates
cnz, // size of Wi and Wj in # of tuples
true, // is_matrix: unused
NULL, NULL, // original I,J tuples
S_input, // cscalar if C is iso, or NULL
C_iso, // true if C is iso
cnz, // # of tuples
NULL, // no duplicates, so dup is NUL
ctype, // the type of Wx (no typecasting)
true, // burble is allowed
Context
)) ;
C->hyper_switch = hyper_switch ;
C->bitmap_switch = bitmap_switch ;
C->sparsity_control = sparsity_control ;
ASSERT (GB_IS_HYPERSPARSE (C)) ;
ASSERT_MATRIX_OK (C, "C from concat hyper", GB0) ;
// workspace has been freed by GB_builder, or transplanted into C
ASSERT (Wi == NULL) ;
ASSERT (Wj == NULL) ;
ASSERT (Wx == NULL) ;
return (GrB_SUCCESS) ;
}
|