File: GB_concat_sparse.c

package info (click to toggle)
suitesparse-graphblas 7.4.0%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 67,112 kB
  • sloc: ansic: 1,072,243; cpp: 8,081; sh: 512; makefile: 506; asm: 369; python: 125; awk: 10
file content (405 lines) | stat: -rw-r--r-- 15,241 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
//------------------------------------------------------------------------------
// GB_concat_sparse: concatenate an array of matrices into a sparse matrix
//------------------------------------------------------------------------------

// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

//------------------------------------------------------------------------------

#define GB_FREE_WORKSPACE                       \
    if (S != NULL)                              \
    {                                           \
        for (int64_t k = 0 ; k < m * n ; k++)   \
        {                                       \
            GB_Matrix_free (&(S [k])) ;         \
        }                                       \
    }                                           \
    GB_FREE_WORK (&S, S_size) ;                 \
    GB_FREE_WORK (&Work, Work_size) ;           \
    GB_WERK_POP (A_ek_slicing, int64_t) ;

#define GB_FREE_ALL         \
{                           \
    GB_FREE_WORKSPACE ;     \
    GB_phybix_free (C) ;    \
}

#include "GB_concat.h"
#include "GB_unused.h"

GrB_Info GB_concat_sparse           // concatenate into a sparse matrix
(
    GrB_Matrix C,                   // input/output matrix for results
    const bool C_iso,               // if true, construct C as iso
    const GB_void *cscalar,         // iso value of C, if C is io 
    const int64_t cnz,              // # of entries in C
    const GrB_Matrix *Tiles,        // 2D row-major array of size m-by-n,
    const GrB_Index m,
    const GrB_Index n,
    const int64_t *restrict Tile_rows,  // size m+1
    const int64_t *restrict Tile_cols,  // size n+1
    GB_Context Context
)
{

    //--------------------------------------------------------------------------
    // allocate C as a sparse matrix
    //--------------------------------------------------------------------------

    GrB_Info info ;
    GrB_Matrix A = NULL ;
    ASSERT_MATRIX_OK (C, "C input to concat sparse", GB0) ;
    GB_WERK_DECLARE (A_ek_slicing, int64_t) ;
    int64_t *Work = NULL ;
    size_t Work_size = 0 ;
    GrB_Matrix *S = NULL ;
    size_t S_size = 0 ;

    GrB_Type ctype = C->type ;
    int64_t cvlen = C->vlen ;
    int64_t cvdim = C->vdim ;
    bool csc = C->is_csc ;
    size_t csize = ctype->size ;
    GB_Type_code ccode = ctype->code ;

    float hyper_switch = C->hyper_switch ;
    float bitmap_switch = C->bitmap_switch ;
    int sparsity_control = C->sparsity_control ;
    GB_phybix_free (C) ;
    // set C->iso = C_iso   OK
    GB_OK (GB_new_bix (&C, // existing header
        ctype, cvlen, cvdim, GB_Ap_malloc, csc, GxB_SPARSE, false,
        hyper_switch, cvdim, cnz, true, C_iso, Context)) ;
    C->bitmap_switch = bitmap_switch ;
    C->sparsity_control = sparsity_control ;
    int64_t *restrict Cp = C->p ;
    int64_t *restrict Ci = C->i ;

    GB_GET_NTHREADS_MAX (nthreads_max, chunk, Context) ;

    if (C_iso)
    { 
        memcpy (C->x, cscalar, csize) ;
    }

    //--------------------------------------------------------------------------
    // allocate workspace
    //--------------------------------------------------------------------------

    int64_t nouter = csc ? n : m ;
    int64_t ninner = csc ? m : n ;
    Work = GB_CALLOC_WORK (ninner * cvdim, int64_t, &Work_size) ;
    S = GB_CALLOC_WORK (m * n, GrB_Matrix, &S_size) ;
    if (S == NULL || Work == NULL)
    { 
        // out of memory
        GB_FREE_ALL ;
        return (GrB_OUT_OF_MEMORY) ;
    }

    //--------------------------------------------------------------------------
    // count entries in each vector of each tile
    //--------------------------------------------------------------------------

    for (int64_t outer = 0 ; outer < nouter ; outer++)
    {
        for (int64_t inner = 0 ; inner < ninner ; inner++)
        {

            //------------------------------------------------------------------
            // get the tile A; transpose and typecast, if needed
            //------------------------------------------------------------------

            A = csc ? GB_TILE (Tiles, inner, outer)
                    : GB_TILE (Tiles, outer, inner) ;
            GrB_Matrix T = NULL ;
            ASSERT_MATRIX_OK (A, "A tile for concat sparse", GB0) ;
            if (csc != A->is_csc)
            {
                // T = (ctype) A', not in-place, using a dynamic header
                GB_OK (GB_new (&T, // auto sparsity, new header
                    A->type, A->vdim, A->vlen, GB_Ap_null, csc,
                    GxB_AUTO_SPARSITY, -1, 1, Context)) ;
                // save T in array S
                if (csc)
                { 
                    GB_TILE (S, inner, outer) = T ;
                }
                else
                { 
                    GB_TILE (S, outer, inner) = T ;
                }
                GB_OK (GB_transpose_cast (T, ctype, csc, A, false, Context)) ;
                A = T ;
                GB_MATRIX_WAIT (A) ;
                ASSERT_MATRIX_OK (A, "T=A' for concat sparse", GB0) ;
            }
            ASSERT (C->is_csc == A->is_csc) ;
            ASSERT (!GB_ANY_PENDING_WORK (A)) ;

            //------------------------------------------------------------------
            // ensure the tile is not bitmap
            //------------------------------------------------------------------

            if (GB_IS_BITMAP (A))
            {
                if (T == NULL)
                {
                    // copy A into T
                    // set T->iso = A->iso  OK: no burble needed
                    GB_OK (GB_dup_worker (&T, A->iso, A, true, NULL, Context)) ;
                    // save T in array S
                    if (csc)
                    { 
                        GB_TILE (S, inner, outer) = T ;
                    }
                    else
                    { 
                        GB_TILE (S, outer, inner) = T ;
                    }
                    ASSERT_MATRIX_OK (T, "T=dup(A) for concat sparse", GB0) ;
                }
                // convert T from bitmap to sparse
                GB_OK (GB_convert_bitmap_to_sparse (T, Context)) ;
                ASSERT_MATRIX_OK (T, "T bitmap to sparse, concat sparse", GB0) ;
                A = T ;
            }

            ASSERT (!GB_IS_BITMAP (A)) ;

            //------------------------------------------------------------------
            // log the # of entries in each vector of the tile A
            //------------------------------------------------------------------

            const int64_t anvec = A->nvec ;
            const int64_t avlen = A->vlen ;
            int64_t cvstart = csc ?  Tile_cols [outer] : Tile_rows [outer] ;
            int64_t *restrict W = Work + inner * cvdim + cvstart ;
            int nth = GB_nthreads (anvec, chunk, nthreads_max) ;
            if (GB_IS_FULL (A))
            { 
                // A is full
                int64_t j ;
                #pragma omp parallel for num_threads(nth) schedule(static)
                for (j = 0 ; j < anvec ; j++)
                {
                    // W [j] = # of entries in A(:,j), which is just avlen
                    W [j] = avlen ;
                }
            }
            else
            { 
                // A is sparse or hyper
                int64_t k ;
                int64_t *restrict Ah = A->h ;
                int64_t *restrict Ap = A->p ;
                #pragma omp parallel for num_threads(nth) schedule(static)
                for (k = 0 ; k < anvec ; k++)
                {
                    // W [j] = # of entries in A(:,j), the kth column of A
                    int64_t j = GBH (Ah, k) ;
                    W [j] = Ap [k+1] - Ap [k] ; 
                }
            }
        }
    }

    //--------------------------------------------------------------------------
    // cumulative sum of entries in each tile
    //--------------------------------------------------------------------------

    int nth = GB_nthreads (ninner*cvdim, chunk, nthreads_max) ;
    int64_t k ;
    #pragma omp parallel for num_threads(nth) schedule(static)
    for (k = 0 ; k < cvdim ; k++)
    {
        int64_t s = 0 ;
        for (int64_t inner = 0 ; inner < ninner ; inner++)
        { 
            int64_t p = inner * cvdim + k ;
            int64_t c = Work [p] ;
            Work [p] = s ;
            s += c ;
        }
        // total number of entries in C(:,k)
        Cp [k] = s ;
    }

    GB_cumsum (Cp, cvdim, &(C->nvec_nonempty), nthreads_max, Context) ;
    ASSERT (cnz == Cp [cvdim]) ;
    C->nvals = cnz ;

    #pragma omp parallel for num_threads(nth) schedule(static)
    for (k = 0 ; k < cvdim ; k++)
    {
        int64_t pC = Cp [k] ;
        for (int64_t inner = 0 ; inner < ninner ; inner++)
        { 
            int64_t p = inner * cvdim + k ;
            Work [p] += pC ;
        }
    }

    //--------------------------------------------------------------------------
    // concatenate all matrices into C
    //--------------------------------------------------------------------------

    for (int64_t outer = 0 ; outer < nouter ; outer++)
    {
        for (int64_t inner = 0 ; inner < ninner ; inner++)
        {

            //------------------------------------------------------------------
            // get the tile A, either the temporary matrix T or the original A
            //------------------------------------------------------------------

            A = csc ? GB_TILE (S, inner, outer)
                    : GB_TILE (S, outer, inner) ;
            if (A == NULL)
            { 
                A = csc ? GB_TILE (Tiles, inner, outer)
                        : GB_TILE (Tiles, outer, inner) ;
            }
            ASSERT_MATRIX_OK (A, "A tile again, concat sparse", GB0) ;

            ASSERT (!GB_IS_BITMAP (A)) ;
            ASSERT (C->is_csc == A->is_csc) ;
            ASSERT (!GB_ANY_PENDING_WORK (A)) ;
            GB_Type_code acode = A->type->code ;

            //------------------------------------------------------------------
            // determine where to place the tile in C
            //------------------------------------------------------------------

            // The tile A appears in vectors cvstart:cvend-1 of C, and indices
            // cistart:ciend-1.

            int64_t cvstart, cvend, cistart, ciend ;
            if (csc)
            { 
                // C and A are held by column
                // Tiles is row-major and accessed in column order
                cvstart = Tile_cols [outer] ;
                cvend   = Tile_cols [outer+1] ;
                cistart = Tile_rows [inner] ;
                ciend   = Tile_rows [inner+1] ;
            }
            else
            { 
                // C and A are held by row
                // Tiles is row-major and accessed in row order
                cvstart = Tile_rows [outer] ;
                cvend   = Tile_rows [outer+1] ;
                cistart = Tile_cols [inner] ;
                ciend   = Tile_cols [inner+1] ;
            }

            // get the workspace pointer array W for this tile
            int64_t *restrict W = Work + inner * cvdim + cvstart ;

            //------------------------------------------------------------------
            // slice the tile
            //------------------------------------------------------------------

            int64_t avdim = cvend - cvstart ;
            int64_t avlen = ciend - cistart ;
            ASSERT (avdim == A->vdim) ;
            ASSERT (avlen == A->vlen) ;
            int A_nthreads, A_ntasks ;
            const int64_t *restrict Ap = A->p ;
            const int64_t *restrict Ah = A->h ;
            const int64_t *restrict Ai = A->i ;
            const bool A_iso = A->iso ;
            GB_SLICE_MATRIX (A, 1, chunk) ;

            //------------------------------------------------------------------
            // copy the tile A into C
            //------------------------------------------------------------------

            bool done = false ;

            if (C_iso)
            { 

                //--------------------------------------------------------------
                // C and A are iso
                //--------------------------------------------------------------

                #define GB_ISO_CONCAT
                #define GB_COPY(pC,pA,A_iso) ;
                #include "GB_concat_sparse_template.c"

            }
            else
            {

                #ifndef GBCUDA_DEV
                if (ccode == acode)
                {
                    // no typecasting needed
                    switch (csize)
                    {
                        #undef  GB_COPY
                        #define GB_COPY(pC,pA,A_iso)                        \
                            Cx [pC] = GBX (Ax, pA, A_iso) ;

                        case GB_1BYTE : // uint8, int8, bool, or 1-byte user
                            #define GB_CTYPE uint8_t
                            #include "GB_concat_sparse_template.c"
                            break ;

                        case GB_2BYTE : // uint16, int16, or 2-byte user
                            #define GB_CTYPE uint16_t
                            #include "GB_concat_sparse_template.c"
                            break ;

                        case GB_4BYTE : // uint32, int32, float, or 4-byte user
                            #define GB_CTYPE uint32_t
                            #include "GB_concat_sparse_template.c"
                            break ;

                        case GB_8BYTE : // uint64, int64, double, float complex,
                                        // or 8-byte user defined
                            #define GB_CTYPE uint64_t
                            #include "GB_concat_sparse_template.c"
                            break ;

                        case GB_16BYTE : // double complex or 16-byte user
                            #define GB_CTYPE GB_blob16
                            #include "GB_concat_sparse_template.c"
                            break ;

                        default:;
                    }
                }
                #endif
            }

            if (!done)
            { 
                // with typecasting or user-defined types
                GB_cast_function cast_A_to_C = GB_cast_factory (ccode, acode) ;
                size_t asize = A->type->size ;
                #define GB_CTYPE GB_void
                #undef  GB_COPY
                #define GB_COPY(pC,pA,A_iso)                    \
                    cast_A_to_C (Cx + (pC)*csize,               \
                        Ax + (A_iso ? 0:(pA)*asize), asize) ;
                #include "GB_concat_sparse_template.c"
            }
    
            GB_WERK_POP (A_ek_slicing, int64_t) ;
        }
    }

    //--------------------------------------------------------------------------
    // free workspace and return result
    //--------------------------------------------------------------------------

    GB_FREE_WORKSPACE ;
    C->magic = GB_MAGIC ;
    ASSERT_MATRIX_OK (C, "C from concat sparse", GB0) ;
    return (GrB_SUCCESS) ;
}