1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
|
//------------------------------------------------------------------------------
// GB_concat_sparse: concatenate an array of matrices into a sparse matrix
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
#define GB_FREE_WORKSPACE \
if (S != NULL) \
{ \
for (int64_t k = 0 ; k < m * n ; k++) \
{ \
GB_Matrix_free (&(S [k])) ; \
} \
} \
GB_FREE_WORK (&S, S_size) ; \
GB_FREE_WORK (&Work, Work_size) ; \
GB_WERK_POP (A_ek_slicing, int64_t) ;
#define GB_FREE_ALL \
{ \
GB_FREE_WORKSPACE ; \
GB_phybix_free (C) ; \
}
#include "GB_concat.h"
#include "GB_unused.h"
GrB_Info GB_concat_sparse // concatenate into a sparse matrix
(
GrB_Matrix C, // input/output matrix for results
const bool C_iso, // if true, construct C as iso
const GB_void *cscalar, // iso value of C, if C is io
const int64_t cnz, // # of entries in C
const GrB_Matrix *Tiles, // 2D row-major array of size m-by-n,
const GrB_Index m,
const GrB_Index n,
const int64_t *restrict Tile_rows, // size m+1
const int64_t *restrict Tile_cols, // size n+1
GB_Context Context
)
{
//--------------------------------------------------------------------------
// allocate C as a sparse matrix
//--------------------------------------------------------------------------
GrB_Info info ;
GrB_Matrix A = NULL ;
ASSERT_MATRIX_OK (C, "C input to concat sparse", GB0) ;
GB_WERK_DECLARE (A_ek_slicing, int64_t) ;
int64_t *Work = NULL ;
size_t Work_size = 0 ;
GrB_Matrix *S = NULL ;
size_t S_size = 0 ;
GrB_Type ctype = C->type ;
int64_t cvlen = C->vlen ;
int64_t cvdim = C->vdim ;
bool csc = C->is_csc ;
size_t csize = ctype->size ;
GB_Type_code ccode = ctype->code ;
float hyper_switch = C->hyper_switch ;
float bitmap_switch = C->bitmap_switch ;
int sparsity_control = C->sparsity_control ;
GB_phybix_free (C) ;
// set C->iso = C_iso OK
GB_OK (GB_new_bix (&C, // existing header
ctype, cvlen, cvdim, GB_Ap_malloc, csc, GxB_SPARSE, false,
hyper_switch, cvdim, cnz, true, C_iso, Context)) ;
C->bitmap_switch = bitmap_switch ;
C->sparsity_control = sparsity_control ;
int64_t *restrict Cp = C->p ;
int64_t *restrict Ci = C->i ;
GB_GET_NTHREADS_MAX (nthreads_max, chunk, Context) ;
if (C_iso)
{
memcpy (C->x, cscalar, csize) ;
}
//--------------------------------------------------------------------------
// allocate workspace
//--------------------------------------------------------------------------
int64_t nouter = csc ? n : m ;
int64_t ninner = csc ? m : n ;
Work = GB_CALLOC_WORK (ninner * cvdim, int64_t, &Work_size) ;
S = GB_CALLOC_WORK (m * n, GrB_Matrix, &S_size) ;
if (S == NULL || Work == NULL)
{
// out of memory
GB_FREE_ALL ;
return (GrB_OUT_OF_MEMORY) ;
}
//--------------------------------------------------------------------------
// count entries in each vector of each tile
//--------------------------------------------------------------------------
for (int64_t outer = 0 ; outer < nouter ; outer++)
{
for (int64_t inner = 0 ; inner < ninner ; inner++)
{
//------------------------------------------------------------------
// get the tile A; transpose and typecast, if needed
//------------------------------------------------------------------
A = csc ? GB_TILE (Tiles, inner, outer)
: GB_TILE (Tiles, outer, inner) ;
GrB_Matrix T = NULL ;
ASSERT_MATRIX_OK (A, "A tile for concat sparse", GB0) ;
if (csc != A->is_csc)
{
// T = (ctype) A', not in-place, using a dynamic header
GB_OK (GB_new (&T, // auto sparsity, new header
A->type, A->vdim, A->vlen, GB_Ap_null, csc,
GxB_AUTO_SPARSITY, -1, 1, Context)) ;
// save T in array S
if (csc)
{
GB_TILE (S, inner, outer) = T ;
}
else
{
GB_TILE (S, outer, inner) = T ;
}
GB_OK (GB_transpose_cast (T, ctype, csc, A, false, Context)) ;
A = T ;
GB_MATRIX_WAIT (A) ;
ASSERT_MATRIX_OK (A, "T=A' for concat sparse", GB0) ;
}
ASSERT (C->is_csc == A->is_csc) ;
ASSERT (!GB_ANY_PENDING_WORK (A)) ;
//------------------------------------------------------------------
// ensure the tile is not bitmap
//------------------------------------------------------------------
if (GB_IS_BITMAP (A))
{
if (T == NULL)
{
// copy A into T
// set T->iso = A->iso OK: no burble needed
GB_OK (GB_dup_worker (&T, A->iso, A, true, NULL, Context)) ;
// save T in array S
if (csc)
{
GB_TILE (S, inner, outer) = T ;
}
else
{
GB_TILE (S, outer, inner) = T ;
}
ASSERT_MATRIX_OK (T, "T=dup(A) for concat sparse", GB0) ;
}
// convert T from bitmap to sparse
GB_OK (GB_convert_bitmap_to_sparse (T, Context)) ;
ASSERT_MATRIX_OK (T, "T bitmap to sparse, concat sparse", GB0) ;
A = T ;
}
ASSERT (!GB_IS_BITMAP (A)) ;
//------------------------------------------------------------------
// log the # of entries in each vector of the tile A
//------------------------------------------------------------------
const int64_t anvec = A->nvec ;
const int64_t avlen = A->vlen ;
int64_t cvstart = csc ? Tile_cols [outer] : Tile_rows [outer] ;
int64_t *restrict W = Work + inner * cvdim + cvstart ;
int nth = GB_nthreads (anvec, chunk, nthreads_max) ;
if (GB_IS_FULL (A))
{
// A is full
int64_t j ;
#pragma omp parallel for num_threads(nth) schedule(static)
for (j = 0 ; j < anvec ; j++)
{
// W [j] = # of entries in A(:,j), which is just avlen
W [j] = avlen ;
}
}
else
{
// A is sparse or hyper
int64_t k ;
int64_t *restrict Ah = A->h ;
int64_t *restrict Ap = A->p ;
#pragma omp parallel for num_threads(nth) schedule(static)
for (k = 0 ; k < anvec ; k++)
{
// W [j] = # of entries in A(:,j), the kth column of A
int64_t j = GBH (Ah, k) ;
W [j] = Ap [k+1] - Ap [k] ;
}
}
}
}
//--------------------------------------------------------------------------
// cumulative sum of entries in each tile
//--------------------------------------------------------------------------
int nth = GB_nthreads (ninner*cvdim, chunk, nthreads_max) ;
int64_t k ;
#pragma omp parallel for num_threads(nth) schedule(static)
for (k = 0 ; k < cvdim ; k++)
{
int64_t s = 0 ;
for (int64_t inner = 0 ; inner < ninner ; inner++)
{
int64_t p = inner * cvdim + k ;
int64_t c = Work [p] ;
Work [p] = s ;
s += c ;
}
// total number of entries in C(:,k)
Cp [k] = s ;
}
GB_cumsum (Cp, cvdim, &(C->nvec_nonempty), nthreads_max, Context) ;
ASSERT (cnz == Cp [cvdim]) ;
C->nvals = cnz ;
#pragma omp parallel for num_threads(nth) schedule(static)
for (k = 0 ; k < cvdim ; k++)
{
int64_t pC = Cp [k] ;
for (int64_t inner = 0 ; inner < ninner ; inner++)
{
int64_t p = inner * cvdim + k ;
Work [p] += pC ;
}
}
//--------------------------------------------------------------------------
// concatenate all matrices into C
//--------------------------------------------------------------------------
for (int64_t outer = 0 ; outer < nouter ; outer++)
{
for (int64_t inner = 0 ; inner < ninner ; inner++)
{
//------------------------------------------------------------------
// get the tile A, either the temporary matrix T or the original A
//------------------------------------------------------------------
A = csc ? GB_TILE (S, inner, outer)
: GB_TILE (S, outer, inner) ;
if (A == NULL)
{
A = csc ? GB_TILE (Tiles, inner, outer)
: GB_TILE (Tiles, outer, inner) ;
}
ASSERT_MATRIX_OK (A, "A tile again, concat sparse", GB0) ;
ASSERT (!GB_IS_BITMAP (A)) ;
ASSERT (C->is_csc == A->is_csc) ;
ASSERT (!GB_ANY_PENDING_WORK (A)) ;
GB_Type_code acode = A->type->code ;
//------------------------------------------------------------------
// determine where to place the tile in C
//------------------------------------------------------------------
// The tile A appears in vectors cvstart:cvend-1 of C, and indices
// cistart:ciend-1.
int64_t cvstart, cvend, cistart, ciend ;
if (csc)
{
// C and A are held by column
// Tiles is row-major and accessed in column order
cvstart = Tile_cols [outer] ;
cvend = Tile_cols [outer+1] ;
cistart = Tile_rows [inner] ;
ciend = Tile_rows [inner+1] ;
}
else
{
// C and A are held by row
// Tiles is row-major and accessed in row order
cvstart = Tile_rows [outer] ;
cvend = Tile_rows [outer+1] ;
cistart = Tile_cols [inner] ;
ciend = Tile_cols [inner+1] ;
}
// get the workspace pointer array W for this tile
int64_t *restrict W = Work + inner * cvdim + cvstart ;
//------------------------------------------------------------------
// slice the tile
//------------------------------------------------------------------
int64_t avdim = cvend - cvstart ;
int64_t avlen = ciend - cistart ;
ASSERT (avdim == A->vdim) ;
ASSERT (avlen == A->vlen) ;
int A_nthreads, A_ntasks ;
const int64_t *restrict Ap = A->p ;
const int64_t *restrict Ah = A->h ;
const int64_t *restrict Ai = A->i ;
const bool A_iso = A->iso ;
GB_SLICE_MATRIX (A, 1, chunk) ;
//------------------------------------------------------------------
// copy the tile A into C
//------------------------------------------------------------------
bool done = false ;
if (C_iso)
{
//--------------------------------------------------------------
// C and A are iso
//--------------------------------------------------------------
#define GB_ISO_CONCAT
#define GB_COPY(pC,pA,A_iso) ;
#include "GB_concat_sparse_template.c"
}
else
{
#ifndef GBCUDA_DEV
if (ccode == acode)
{
// no typecasting needed
switch (csize)
{
#undef GB_COPY
#define GB_COPY(pC,pA,A_iso) \
Cx [pC] = GBX (Ax, pA, A_iso) ;
case GB_1BYTE : // uint8, int8, bool, or 1-byte user
#define GB_CTYPE uint8_t
#include "GB_concat_sparse_template.c"
break ;
case GB_2BYTE : // uint16, int16, or 2-byte user
#define GB_CTYPE uint16_t
#include "GB_concat_sparse_template.c"
break ;
case GB_4BYTE : // uint32, int32, float, or 4-byte user
#define GB_CTYPE uint32_t
#include "GB_concat_sparse_template.c"
break ;
case GB_8BYTE : // uint64, int64, double, float complex,
// or 8-byte user defined
#define GB_CTYPE uint64_t
#include "GB_concat_sparse_template.c"
break ;
case GB_16BYTE : // double complex or 16-byte user
#define GB_CTYPE GB_blob16
#include "GB_concat_sparse_template.c"
break ;
default:;
}
}
#endif
}
if (!done)
{
// with typecasting or user-defined types
GB_cast_function cast_A_to_C = GB_cast_factory (ccode, acode) ;
size_t asize = A->type->size ;
#define GB_CTYPE GB_void
#undef GB_COPY
#define GB_COPY(pC,pA,A_iso) \
cast_A_to_C (Cx + (pC)*csize, \
Ax + (A_iso ? 0:(pA)*asize), asize) ;
#include "GB_concat_sparse_template.c"
}
GB_WERK_POP (A_ek_slicing, int64_t) ;
}
}
//--------------------------------------------------------------------------
// free workspace and return result
//--------------------------------------------------------------------------
GB_FREE_WORKSPACE ;
C->magic = GB_MAGIC ;
ASSERT_MATRIX_OK (C, "C from concat sparse", GB0) ;
return (GrB_SUCCESS) ;
}
|