1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
|
//------------------------------------------------------------------------------
// GB_convert.h: converting between sparsity structures
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
#ifndef GB_CONVERT_H
#define GB_CONVERT_H
// these parameters define the hyper_switch needed to ensure matrix stays
// either always hypersparse, or never hypersparse.
#define GB_ALWAYS_HYPER (1.0)
#define GB_NEVER_HYPER (-1.0)
// true if A is bitmap
#define GB_IS_BITMAP(A) ((A) != NULL && ((A)->b != NULL))
// true if A is full (but not bitmap)
#define GB_IS_FULL(A) \
((A) != NULL && (A)->h == NULL && (A)->p == NULL && (A)->i == NULL \
&& (A)->b == NULL)
// true if A is hypersparse
#define GB_IS_HYPERSPARSE(A) ((A) != NULL && ((A)->h != NULL))
// true if A is sparse (but not hypersparse)
#define GB_IS_SPARSE(A) ((A) != NULL && ((A)->h == NULL) && (A)->p != NULL)
// determine the sparsity_control for a matrix
int GB_sparsity_control // revised sparsity_control
(
int sparsity_control, // sparsity_control
int64_t vdim // A->vdim, or -1 to ignore this condition
) ;
// GB_sparsity: determine the current sparsity_control status of a matrix
static inline int GB_sparsity (GrB_Matrix A)
{
if (A == NULL)
{
// if A is NULL, pretend it is sparse
return (GxB_SPARSE) ;
}
else if (GB_IS_HYPERSPARSE (A))
{
return (GxB_HYPERSPARSE) ;
}
else if (GB_IS_FULL (A))
{
return (GxB_FULL) ;
}
else if (GB_IS_BITMAP (A))
{
return (GxB_BITMAP) ;
}
else
{
return (GxB_SPARSE) ;
}
}
GB_PUBLIC
GrB_Info GB_convert_hyper_to_sparse // convert hypersparse to sparse
(
GrB_Matrix A, // matrix to convert from hypersparse to sparse
bool do_burble, // if true, then burble is allowed
GB_Context Context
) ;
GB_PUBLIC
GrB_Info GB_convert_sparse_to_hyper // convert from sparse to hypersparse
(
GrB_Matrix A, // matrix to convert to hypersparse
GB_Context Context
) ;
bool GB_convert_hyper_to_sparse_test // test for hypersparse to sparse
(
float hyper_switch, // A->hyper_switch
int64_t k, // # of non-empty vectors of A (an estimate is OK)
int64_t vdim // A->vdim
) ;
bool GB_convert_sparse_to_hyper_test // test sparse to hypersparse conversion
(
float hyper_switch, // A->hyper_switch
int64_t k, // # of non-empty vectors of A (an estimate is OK)
int64_t vdim // A->vdim
) ;
bool GB_convert_bitmap_to_sparse_test // test for hyper/sparse to bitmap
(
float bitmap_switch, // A->bitmap_switch
int64_t anz, // # of entries in A = GB_nnz (A)
int64_t vlen, // A->vlen
int64_t vdim // A->vdim
) ;
bool GB_convert_sparse_to_bitmap_test // test for hyper/sparse to bitmap
(
float bitmap_switch, // A->bitmap_switch
int64_t anz, // # of entries in A = GB_nnz (A)
int64_t vlen, // A->vlen
int64_t vdim // A->vdim
) ;
GrB_Info GB_convert_full_to_sparse // convert matrix from full to sparse
(
GrB_Matrix A, // matrix to convert from full to sparse
GB_Context Context
) ;
GrB_Info GB_convert_full_to_bitmap // convert matrix from full to bitmap
(
GrB_Matrix A, // matrix to convert from full to bitmap
GB_Context Context
) ;
GrB_Info GB_convert_sparse_to_bitmap // convert sparse/hypersparse to bitmap
(
GrB_Matrix A, // matrix to convert from sparse to bitmap
GB_Context Context
) ;
GrB_Info GB_convert_bitmap_to_sparse // convert matrix from bitmap to sparse
(
GrB_Matrix A, // matrix to convert from bitmap to sparse
GB_Context Context
) ;
GrB_Info GB_convert_bitmap_worker // extract CSC/CSR or triplets from bitmap
(
// outputs:
int64_t *restrict Ap, // vector pointers for CSC/CSR form
int64_t *restrict Ai, // indices for CSC/CSR or triplet form
int64_t *restrict Aj, // vector indices for triplet form
GB_void *restrict Ax_new, // values for CSC/CSR or triplet form
int64_t *anvec_nonempty, // # of non-empty vectors
// inputs: not modified
const GrB_Matrix A, // matrix to extract; not modified
GB_Context Context
) ;
GrB_Info GB_convert_any_to_bitmap // convert to bitmap
(
GrB_Matrix A, // matrix to convert to bitmap
GB_Context Context
) ;
GB_PUBLIC
void GB_convert_any_to_full // convert any matrix to full
(
GrB_Matrix A // matrix to convert to full
) ;
GrB_Info GB_convert_any_to_hyper // convert to hypersparse
(
GrB_Matrix A, // matrix to convert to hypersparse
GB_Context Context
) ;
GrB_Info GB_convert_any_to_sparse // convert to sparse
(
GrB_Matrix A, // matrix to convert to sparse
GB_Context Context
) ;
GrB_Info GB_convert_to_nonfull // ensure a matrix is not full
(
GrB_Matrix A,
GB_Context Context
) ;
/* ensure C is sparse or hypersparse */
#define GB_ENSURE_SPARSE(C) \
{ \
if (GB_IS_BITMAP (C)) \
{ \
/* convert C from bitmap to sparse */ \
GB_OK (GB_convert_bitmap_to_sparse (C, Context)) ; \
} \
else if (GB_IS_FULL (C)) \
{ \
/* convert C from full to sparse */ \
GB_OK (GB_convert_full_to_sparse (C, Context)) ; \
} \
}
#define GB_ENSURE_FULL(C) \
{ \
ASSERT (GB_is_dense (C)) ; \
if (GB_sparsity_control (C->sparsity_control, C->vdim) & GxB_FULL) \
{ \
/* convert C from any structure to full, */ \
/* if permitted by C->sparsity_control */ \
GB_convert_any_to_full (C) ; \
} \
}
//------------------------------------------------------------------------------
// GB_is_dense
//------------------------------------------------------------------------------
static inline bool GB_is_dense
(
const GrB_Matrix A
)
{
// check if A is competely dense: all entries present.
// zombies, pending tuples, and jumbled status are not considered.
// A can have any sparsity structure: hyper, sparse, bitmap, or full.
// It can be converted to full, if zombies/tuples/jumbled are discarded.
if (A == NULL)
{
return (false) ;
}
if (GB_IS_FULL (A))
{
// A is full; the pattern is not present
return (true) ;
}
// A is sparse, hyper, or bitmap: check if all entries present
return (GB_nnz_full (A) == GB_nnz (A)) ;
}
//------------------------------------------------------------------------------
// GB_as_if_full
//------------------------------------------------------------------------------
static inline bool GB_as_if_full
(
const GrB_Matrix A
)
{
// check if A is competely dense: all entries present.
// zombies, pending tuples, and jumbled status are checked.
// A can have any sparsity structure: hyper, sparse, bitmap, or full.
// It can be converted to full.
if (A == NULL)
{
return (false) ;
}
if (GB_IS_FULL (A))
{
// A is full; the pattern is not present
return (true) ;
}
if (GB_ANY_PENDING_WORK (A))
{
// A has pending work and so cannot be treated as if full.
return (false) ;
}
// A is sparse, hyper, or bitmap: check if all entries present
return (GB_nnz_full (A) == GB_nnz (A)) ;
}
//------------------------------------------------------------------------------
GrB_Info GB_conform // conform a matrix to its desired sparsity structure
(
GrB_Matrix A, // matrix to conform
GB_Context Context
) ;
static inline const char *GB_sparsity_char (int sparsity)
{
switch (sparsity)
{
case GxB_HYPERSPARSE: return ("H") ;
case GxB_SPARSE: return ("S") ;
case GxB_BITMAP: return ("B") ;
case GxB_FULL: return ("F") ;
default: ASSERT (0) ; return ("?") ;
}
}
static inline const char *GB_sparsity_char_matrix (GrB_Matrix A)
{
bool A_as_if_full = GB_as_if_full (A) ;
if (A == NULL) return (".") ;
if (GB_IS_HYPERSPARSE (A)) return (A_as_if_full ? "Hf" : "H") ;
if (GB_IS_SPARSE (A)) return (A_as_if_full ? "Sf" : "S") ;
if (GB_IS_BITMAP (A)) return (A_as_if_full ? "Bf" : "B") ;
if (GB_IS_FULL (A)) return ("F") ;
ASSERT (0) ; return ("?") ;
}
GrB_Matrix GB_hyper_shallow // return C
(
GrB_Matrix C, // output matrix
const GrB_Matrix A // input matrix
) ;
#endif
|