1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
|
//------------------------------------------------------------------------------
// GB_convert_hyper_to_sparse: convert a matrix from hypersparse to sparse
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// On input, the matrix may have shallow A->p and A->h content; it is safely
// removed. On output, the matrix is always non-hypersparse (even if out of
// memory). If the input matrix is hypersparse, it is given a new A->p that is
// not shallow. If the input matrix is already non-hypersparse, nothing is
// changed (and in that case A->p remains shallow on output if shallow on
// input). The A->x and A->i content is not changed; it remains in whatever
// shallow/non-shallow/iso property that it had on input).
// If an out-of-memory condition occurs, A is unchanged.
// If the input matrix A is sparse, bitmap or full, it is unchanged.
#include "GB.h"
GB_PUBLIC
GrB_Info GB_convert_hyper_to_sparse // convert hypersparse to sparse
(
GrB_Matrix A, // matrix to convert to non-hypersparse
bool do_burble, // if true, then burble is allowed
GB_Context Context
)
{
//--------------------------------------------------------------------------
// check inputs
//--------------------------------------------------------------------------
ASSERT_MATRIX_OK (A, "A being converted from hyper to sparse", GB0) ;
ASSERT (GB_ZOMBIES_OK (A)) ;
ASSERT (GB_JUMBLED_OK (A)) ;
ASSERT (GB_PENDING_OK (A)) ;
if (!GB_IS_HYPERSPARSE (A))
{
// nothing to do
return (GrB_SUCCESS) ;
}
//--------------------------------------------------------------------------
// convert A from hypersparse to sparse
//--------------------------------------------------------------------------
if (do_burble) GBURBLE ("(hyper to sparse) ") ;
int64_t n = A->vdim ;
int64_t anz = GB_nnz (A) ;
if (n == 1)
{
//----------------------------------------------------------------------
// A is a single hypersparse vector
//----------------------------------------------------------------------
// This cannot fail, since no memory is allocated. It must succeed if
// A is a typecasted GrB_Vector, or else it will be returned to the
// user as an invalid GrB_Vector.
ASSERT (A->plen == 1) ;
ASSERT (A->p_size >= 2 * sizeof (int64_t)) ;
ASSERT (A->nvec == 0 || A->nvec == 1) ;
if (A->nvec == 0)
{
A->p [0] = 0 ;
A->p [1] = 0 ;
A->nvec = 1 ;
}
A->nvec_nonempty = (anz > 0) ? 1 : 0 ;
// free A->h unless it is shallow
if (!A->h_shallow)
{
GB_FREE (&(A->h), A->h_size) ;
}
A->h = NULL ;
A->h_size = 0 ;
A->h_shallow = false ;
GB_hyper_hash_free (A) ;
}
else
{
//----------------------------------------------------------------------
// determine the number of threads to use
//----------------------------------------------------------------------
GB_GET_NTHREADS_MAX (nthreads_max, chunk, Context) ;
int nthreads = GB_nthreads (n, chunk, nthreads_max) ;
int ntasks = (nthreads == 1) ? 1 : (8 * nthreads) ;
ntasks = GB_IMIN (ntasks, n) ;
ntasks = GB_IMAX (ntasks, 1) ;
//----------------------------------------------------------------------
// allocate the new Ap array, of size n+1
//----------------------------------------------------------------------
int64_t *restrict Ap_new = NULL ; size_t Ap_new_size = 0 ;
Ap_new = GB_MALLOC (n+1, int64_t, &Ap_new_size) ;
if (Ap_new == NULL)
{
// out of memory
return (GrB_OUT_OF_MEMORY) ;
}
#ifdef GB_DEBUG
// to ensure all values of Ap_new are assigned below.
for (int64_t j = 0 ; j <= n ; j++) Ap_new [j] = -99999 ;
#endif
//----------------------------------------------------------------------
// get the old hyperlist
//----------------------------------------------------------------------
int64_t nvec = A->nvec ; // # of vectors in Ah_old
int64_t *restrict Ap_old = A->p ; // size nvec+1
int64_t *restrict Ah_old = A->h ; // size nvec
int64_t nvec_nonempty = 0 ; // recompute A->nvec_nonempty
//----------------------------------------------------------------------
// construct the new vector pointers
//----------------------------------------------------------------------
int tid ;
#pragma omp parallel for num_threads(nthreads) schedule(dynamic,1) \
reduction(+:nvec_nonempty)
for (tid = 0 ; tid < ntasks ; tid++)
{
int64_t jstart, jend, my_nvec_nonempty = 0 ;
GB_PARTITION (jstart, jend, n, tid, ntasks) ;
ASSERT (0 <= jstart && jstart <= jend && jend <= n) ;
// task tid computes Ap_new [jstart:jend-1] from Ap_old, Ah_old.
// GB_SPLIT_BINARY_SEARCH of Ah_old [0..nvec-1] for jstart:
// If found is true then Ah_old [k] == jstart.
// If found is false, and nvec > 0 then
// Ah_old [0 ... k-1] < jstart < Ah_old [k ... nvec-1]
// Whether or not i is found, if nvec > 0
// Ah_old [0 ... k-1] < jstart <= Ah_old [k ... nvec-1]
// If nvec == 0, then k == 0 and found will be false. In this
// case, jstart cannot be compared with any content of Ah_old,
// since Ah_old is completely empty (Ah_old [0] is invalid).
int64_t k = 0, pright = nvec-1 ;
bool found ;
GB_SPLIT_BINARY_SEARCH (jstart, Ah_old, k, pright, found) ;
ASSERT (k >= 0 && k <= nvec) ;
ASSERT (GB_IMPLIES (nvec == 0, !found && k == 0)) ;
ASSERT (GB_IMPLIES (found, jstart == Ah_old [k])) ;
ASSERT (GB_IMPLIES (!found && k < nvec, jstart < Ah_old [k])) ;
// Let jk = Ah_old [k], jlast = Ah_old [k-1], and pk = Ah_old [k].
// Then Ap_new [jlast+1:jk] must be set to pk. This must be done
// for all k = 0:nvec-1. In addition, the last vector k=nvec-1
// must be terminated by setting Ap_new [jk+1:n-1] to Ap_old [nvec].
// A task owns the kth vector if jk is in jstart:jend-1, inclusive.
// It counts all non-empty vectors that it owns. However, the task
// must also set Ap_new [...] = pk for any jlast+1:jk that overlaps
// jstart:jend-1, even if it does not own that particular vector k.
// This happens only at the tail end of jstart:jend-1.
int64_t jlast = (k == 0) ? (-1) : Ah_old [k-1] ;
jlast = GB_IMAX (jstart-1, jlast) ;
bool done = false ;
for ( ; k <= nvec && !done ; k++)
{
//--------------------------------------------------------------
// get the kth vector in Ah_old, which is vector index jk.
//--------------------------------------------------------------
int64_t jk = (k < nvec) ? Ah_old [k] : n ;
int64_t pk = (k < nvec) ? Ap_old [k] : anz ;
//--------------------------------------------------------------
// determine if this task owns jk
//--------------------------------------------------------------
int64_t jfin ;
if (jk >= jend)
{
// This is the last iteration for this task. This task
// does not own the kth vector. However, it does own the
// vector indices jlast+1:jend-1, and these vectors must
// be handled by this task.
jfin = jend - 1 ;
done = true ;
}
else
{
// This task owns the kth vector, which is vector index jk.
// Ap must be set to pk for all vector indices jlast+1:jk.
jfin = jk ;
ASSERT (k >= 0 && k < nvec && nvec > 0) ;
if (pk < Ap_old [k+1]) my_nvec_nonempty++ ;
}
//--------------------------------------------------------------
// set Ap_new for this vector
//--------------------------------------------------------------
// Ap_new [jlast+1:jk] must be set to pk. This tasks handles
// the intersection of jlast+1:jk with jstart:jend-1.
for (int64_t j = jlast+1 ; j <= jfin ; j++)
{
Ap_new [j] = pk ;
}
//--------------------------------------------------------------
// keep track of the prior vector index
//--------------------------------------------------------------
jlast = jk ;
}
nvec_nonempty += my_nvec_nonempty ;
//------------------------------------------------------------------
// no task owns Ap_new [n] so it is set by the last task
//------------------------------------------------------------------
if (tid == ntasks-1)
{
ASSERT (jend == n) ;
Ap_new [n] = anz ;
}
}
// free the old A->p, A->h, and A->H hyperlist content.
// this clears A->nvec_nonempty so it must be restored below.
GB_phy_free (A) ;
// transplant the new vector pointers; matrix is no longer hypersparse
A->p = Ap_new ; A->p_size = Ap_new_size ;
A->h = NULL ;
A->nvec = n ;
A->nvec_nonempty = nvec_nonempty ;
A->plen = n ;
A->p_shallow = false ;
A->h_shallow = false ;
A->nvals = anz ;
}
A->magic = GB_MAGIC ;
//--------------------------------------------------------------------------
// A is now sparse
//--------------------------------------------------------------------------
ASSERT (anz == A->p [n]) ;
ASSERT (anz == GB_nnz (A)) ;
ASSERT_MATRIX_OK (A, "A converted to sparse", GB0) ;
ASSERT (GB_IS_SPARSE (A)) ;
ASSERT (GB_ZOMBIES_OK (A)) ;
ASSERT (GB_JUMBLED_OK (A)) ;
ASSERT (GB_PENDING_OK (A)) ;
return (GrB_SUCCESS) ;
}
|