1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
|
//------------------------------------------------------------------------------
// GB_convert_sparse_to_hyper: convert a matrix from sparse to hyperspasre
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// On input, the matrix may have shallow A->p content; it is safely removed.
// On output, the matrix is always hypersparse (even if out of memory). If the
// input matrix is non-hypersparse, it is given new A->p and A->h that are not
// shallow. If the input matrix is already hypersparse, nothing is changed
// (and in that case A->p and A->h remain shallow on output if shallow on
// input). The A->x and A->i content is not changed; it remains in whatever
// shallow/non-shallow/iso property that it had on input).
// If an out-of-memory condition occurs, all content of the matrix is cleared.
// If the input matrix A is hypersparse, bitmap or full, it is unchanged.
#include "GB.h"
GrB_Info GB_convert_sparse_to_hyper // convert from sparse to hypersparse
(
GrB_Matrix A, // matrix to convert to hypersparse
GB_Context Context
)
{
//--------------------------------------------------------------------------
// check inputs
//--------------------------------------------------------------------------
ASSERT_MATRIX_OK (A, "A converting to hypersparse", GB0) ;
int64_t anz = GB_nnz (A) ;
ASSERT (GB_ZOMBIES_OK (A)) ;
ASSERT (GB_JUMBLED_OK (A)) ;
ASSERT (GB_PENDING_OK (A)) ;
//--------------------------------------------------------------------------
// convert A from sparse to hypersparse
//--------------------------------------------------------------------------
if (GB_IS_SPARSE (A))
{
//----------------------------------------------------------------------
// determine the number of threads to use
//----------------------------------------------------------------------
int64_t n = A->vdim ;
GB_BURBLE_N (n, "(sparse to hyper) ") ;
GB_GET_NTHREADS_MAX (nthreads_max, chunk, Context) ;
int nthreads = GB_nthreads (n, chunk, nthreads_max) ;
int ntasks = (nthreads == 1) ? 1 : (8 * nthreads) ;
ntasks = GB_IMIN (ntasks, n) ;
ntasks = GB_IMAX (ntasks, 1) ;
//----------------------------------------------------------------------
// count the number of non-empty vectors in A in each slice
//----------------------------------------------------------------------
ASSERT (A->nvec == A->plen && A->plen == n) ;
const int64_t *restrict Ap_old = A->p ;
size_t Ap_old_size = A->p_size ;
bool Ap_old_shallow = A->p_shallow ;
GB_WERK_DECLARE (Count, int64_t) ;
GB_WERK_PUSH (Count, ntasks+1, int64_t) ;
if (Count == NULL)
{
// out of memory
return (GrB_OUT_OF_MEMORY) ;
}
int tid ;
#pragma omp parallel for num_threads(nthreads) schedule(dynamic,1)
for (tid = 0 ; tid < ntasks ; tid++)
{
int64_t jstart, jend, my_nvec_nonempty = 0 ; ;
GB_PARTITION (jstart, jend, n, tid, ntasks) ;
for (int64_t j = jstart ; j < jend ; j++)
{
if (Ap_old [j] < Ap_old [j+1]) my_nvec_nonempty++ ;
}
Count [tid] = my_nvec_nonempty ;
}
//----------------------------------------------------------------------
// compute cumulative sum of Counts and nvec_nonempty
//----------------------------------------------------------------------
GB_cumsum (Count, ntasks, NULL, 1, NULL) ;
int64_t nvec_nonempty = Count [ntasks] ;
A->nvec_nonempty = nvec_nonempty ;
//----------------------------------------------------------------------
// allocate the new A->p and A->h
//----------------------------------------------------------------------
int64_t *restrict Ap_new = NULL ; size_t Ap_new_size = 0 ;
int64_t *restrict Ah_new = NULL ; size_t Ah_new_size = 0 ;
int64_t plen_new = (n == 1) ? 1 : nvec_nonempty ;
Ap_new = GB_MALLOC (plen_new+1, int64_t, &Ap_new_size) ;
Ah_new = GB_MALLOC (plen_new , int64_t, &Ah_new_size) ;
if (Ap_new == NULL || Ah_new == NULL)
{
// out of memory
GB_WERK_POP (Count, int64_t) ;
GB_FREE (&Ap_new, Ap_new_size) ;
GB_FREE (&Ah_new, Ah_new_size) ;
return (GrB_OUT_OF_MEMORY) ;
}
//----------------------------------------------------------------------
// transplant the new A->p and A->h into the matrix
//----------------------------------------------------------------------
A->plen = plen_new ;
A->nvec = nvec_nonempty ;
A->p = Ap_new ; A->p_size = Ap_new_size ;
A->h = Ah_new ; A->h_size = Ah_new_size ;
A->p_shallow = false ;
A->h_shallow = false ;
//----------------------------------------------------------------------
// construct the new hyperlist in the new A->p and A->h
//----------------------------------------------------------------------
#pragma omp parallel for num_threads(nthreads) schedule(dynamic,1)
for (tid = 0 ; tid < ntasks ; tid++)
{
int64_t jstart, jend, k = Count [tid] ;
GB_PARTITION (jstart, jend, n, tid, ntasks) ;
for (int64_t j = jstart ; j < jend ; j++)
{
if (Ap_old [j] < Ap_old [j+1])
{
// vector index j is the kth vector in the new Ah
Ap_new [k] = Ap_old [j] ;
Ah_new [k] = j ;
k++ ;
}
}
ASSERT (k == Count [tid+1]) ;
}
Ap_new [nvec_nonempty] = anz ;
A->magic = GB_MAGIC ;
//----------------------------------------------------------------------
// free workspace, and free the old A->p unless it's shallow
//----------------------------------------------------------------------
GB_WERK_POP (Count, int64_t) ;
if (!Ap_old_shallow)
{
GB_FREE (&Ap_old, Ap_old_size) ;
}
//----------------------------------------------------------------------
// A is now hypersparse, but A->Y is not yet constructed
//----------------------------------------------------------------------
ASSERT (GB_IS_HYPERSPARSE (A)) ;
ASSERT (A->Y == NULL && A->Y_shallow == false) ;
}
//--------------------------------------------------------------------------
// A is now in hypersparse form (or left as full or bitmap)
//--------------------------------------------------------------------------
ASSERT (anz == GB_nnz (A)) ;
ASSERT_MATRIX_OK (A, "A conv to hypersparse (or left full/bitmap)", GB0) ;
ASSERT (!GB_IS_SPARSE (A)) ;
ASSERT (GB_ZOMBIES_OK (A)) ;
ASSERT (GB_JUMBLED_OK (A)) ;
ASSERT (GB_PENDING_OK (A)) ;
return (GrB_SUCCESS) ;
}
|