1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
|
//------------------------------------------------------------------------------
// GB_dense_subassign_06d: C(:,:)<A> = A; C is full/bitmap, M and A are aliased
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// Method 06d: C(:,:)<A> = A ; no S, C is dense, M and A are aliased
// M: present
// Mask_comp: false
// Mask_struct: true or false (both cases handled)
// C_replace: false
// accum: NULL
// A: matrix, and aliased to M
// S: none
// C must be bitmap or as-if-full. No entries are deleted and thus no zombies
// are introduced into C. C can be hypersparse, sparse, bitmap, or full, and
// its sparsity structure does not change. If C is hypersparse, sparse, or
// full, then the pattern does not change (all entries are present, and this
// does not change), and these cases can all be treated the same (as if full).
// If C is bitmap, new entries can be inserted into the bitmap C->b.
// C and A can have any sparsity structure.
#include "GB_subassign_methods.h"
#include "GB_dense.h"
#ifndef GBCUDA_DEV
#include "GB_type__include.h"
#endif
#undef GB_FREE_ALL
#define GB_FREE_ALL \
{ \
GB_WERK_POP (A_ek_slicing, int64_t) ; \
}
GrB_Info GB_dense_subassign_06d
(
GrB_Matrix C,
// input:
const GrB_Matrix A,
bool Mask_struct,
GB_Context Context
)
{
//--------------------------------------------------------------------------
// get inputs
//--------------------------------------------------------------------------
GrB_Info info ;
GB_WERK_DECLARE (A_ek_slicing, int64_t) ;
ASSERT_MATRIX_OK (C, "C for subassign method_06d", GB0) ;
ASSERT (!GB_ZOMBIES (C)) ;
ASSERT (!GB_JUMBLED (C)) ;
ASSERT (!GB_PENDING (C)) ;
ASSERT (GB_IS_BITMAP (C) || GB_as_if_full (C)) ;
ASSERT (!GB_aliased (C, A)) ; // NO ALIAS of C==A
ASSERT_MATRIX_OK (A, "A for subassign method_06d", GB0) ;
ASSERT (!GB_ZOMBIES (A)) ;
ASSERT (GB_JUMBLED_OK (A)) ;
ASSERT (!GB_PENDING (A)) ;
const GB_Type_code ccode = C->type->code ;
const bool C_is_bitmap = GB_IS_BITMAP (C) ;
const bool A_is_bitmap = GB_IS_BITMAP (A) ;
const bool A_is_dense = GB_as_if_full (A) ;
//--------------------------------------------------------------------------
// Method 06d: C(:,:)<A> = A ; no S; C is dense, M and A are aliased
//--------------------------------------------------------------------------
// Time: Optimal: the method must iterate over all entries in A,
// and the time is O(nnz(A)).
//--------------------------------------------------------------------------
// Parallel: slice A into equal-sized chunks
//--------------------------------------------------------------------------
GB_GET_NTHREADS_MAX (nthreads_max, chunk, Context) ;
//--------------------------------------------------------------------------
// slice the entries for each task
//--------------------------------------------------------------------------
int A_ntasks, A_nthreads ;
if (A_is_bitmap || A_is_dense)
{
// no need to construct tasks
int64_t anz = GB_nnz_held (A) ;
A_nthreads = GB_nthreads ((anz + A->nvec), 32*chunk, nthreads_max) ;
A_ntasks = (A_nthreads == 1) ? 1 : (8 * A_nthreads) ;
}
else
{
GB_SLICE_MATRIX (A, 8, 32*chunk) ;
}
//--------------------------------------------------------------------------
// C<A> = A for built-in types
//--------------------------------------------------------------------------
if (C->iso)
{
//----------------------------------------------------------------------
// C is iso
//----------------------------------------------------------------------
// Since C is iso, A must be iso (or effectively iso), which is also
// the mask M. An iso mask matrix M is converted into a structural
// mask by GB_get_mask, and thus Mask_struct must be true if C is iso.
ASSERT (Mask_struct) ;
#define GB_ISO_ASSIGN
#include "GB_dense_subassign_06d_template.c"
}
else
{
//----------------------------------------------------------------------
// C is non iso
//----------------------------------------------------------------------
bool done = false ;
#ifndef GBCUDA_DEV
//------------------------------------------------------------------
// define the worker for the switch factory
//------------------------------------------------------------------
#define GB_Cdense_06d(cname) GB (_Cdense_06d_ ## cname)
#define GB_WORKER(cname) \
{ \
info = GB_Cdense_06d(cname) (C, A, Mask_struct, \
A_ek_slicing, A_ntasks, A_nthreads) ; \
done = (info != GrB_NO_VALUE) ; \
} \
break ;
//------------------------------------------------------------------
// launch the switch factory
//------------------------------------------------------------------
if (C->type == A->type && ccode < GB_UDT_code)
{
// C<A> = A
switch (ccode)
{
case GB_BOOL_code : GB_WORKER (_bool )
case GB_INT8_code : GB_WORKER (_int8 )
case GB_INT16_code : GB_WORKER (_int16 )
case GB_INT32_code : GB_WORKER (_int32 )
case GB_INT64_code : GB_WORKER (_int64 )
case GB_UINT8_code : GB_WORKER (_uint8 )
case GB_UINT16_code : GB_WORKER (_uint16)
case GB_UINT32_code : GB_WORKER (_uint32)
case GB_UINT64_code : GB_WORKER (_uint64)
case GB_FP32_code : GB_WORKER (_fp32 )
case GB_FP64_code : GB_WORKER (_fp64 )
case GB_FC32_code : GB_WORKER (_fc32 )
case GB_FC64_code : GB_WORKER (_fc64 )
default: ;
}
}
#endif
//----------------------------------------------------------------------
// C<A> = A for user-defined types, and typecasting
//----------------------------------------------------------------------
if (!done)
{
//------------------------------------------------------------------
// get operators, functions, workspace, contents of A and C
//------------------------------------------------------------------
GB_BURBLE_MATRIX (A, "(generic C(:,:)<Z>=Z assign) ") ;
const size_t csize = C->type->size ;
const size_t asize = A->type->size ;
const GB_Type_code acode = A->type->code ;
GB_cast_function cast_A_to_C = GB_cast_factory (ccode, acode) ;
// Cx [p] = (ctype) Ax [pA]
#define GB_COPY_A_TO_C(Cx,p,Ax,pA,A_iso) \
cast_A_to_C (Cx + ((p)*csize), \
Ax + (A_iso ? 0:(pA)*asize), asize)
#define GB_AX_MASK(Ax,pA,asize) \
GB_mcast (Ax, pA, asize)
#define GB_CTYPE GB_void
#define GB_ATYPE GB_void
// no vectorization
#define GB_PRAGMA_SIMD_VECTORIZE ;
#undef GB_PRAGMA_SIMD_REDUCTION
#define GB_PRAGMA_SIMD_REDUCTION(op,s) ;
#include "GB_dense_subassign_06d_template.c"
}
}
//--------------------------------------------------------------------------
// free workspace and return result
//--------------------------------------------------------------------------
GB_FREE_ALL ;
ASSERT_MATRIX_OK (C, "C output for subassign method_06d", GB0) ;
return (GrB_SUCCESS) ;
}
|