1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
|
//------------------------------------------------------------------------------
// GB_dense_subassign_23: C += B where C is dense and B is sparse or dense
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// C and B must have the same vector dimension and vector length.
// FUTURE::: the transposed case, C+=B' could easily be done.
// The parallelism used is identical to GB_AxB_colscale.
// The type of C must match the type of x and z for the accum function, since
// C(i,j) = accum (C(i,j), B(i,j)) is handled. The generic case here can
// typecast B(i,j) but not C(i,j). The case for typecasting of C is handled by
// Method 04.
// The caller passes in the second matrix as A, but it is called B here to
// match its use as the 2nd input to the binary accum operator. C and B can
// have any sparsity structure, but C must be dense.
#include "GB_dense.h"
#include "GB_binop.h"
#ifndef GBCUDA_DEV
#include "GB_binop__include.h"
#endif
#include "GB_unused.h"
#define GB_FREE_ALL \
{ \
GB_WERK_POP (B_ek_slicing, int64_t) ; \
}
GrB_Info GB_dense_subassign_23 // C += B; C is dense, B is sparse or dense
(
GrB_Matrix C, // input/output matrix
const GrB_Matrix B, // input matrix
const GrB_BinaryOp accum, // operator to apply
GB_Context Context
)
{
//--------------------------------------------------------------------------
// check inputs
//--------------------------------------------------------------------------
ASSERT (!GB_aliased (C, B)) ; // NO ALIAS of C==A (A is called B here)
//--------------------------------------------------------------------------
// check inputs
//--------------------------------------------------------------------------
GrB_Info info ;
ASSERT_MATRIX_OK (C, "C for C+=B", GB0) ;
ASSERT (!GB_PENDING (C)) ;
ASSERT (!GB_JUMBLED (C)) ;
ASSERT (!GB_ZOMBIES (C)) ;
ASSERT (GB_is_dense (C)) ;
ASSERT_MATRIX_OK (B, "B for C+=B", GB0) ;
ASSERT (!GB_PENDING (B)) ;
ASSERT (GB_JUMBLED_OK (B)) ;
ASSERT (!GB_ZOMBIES (B)) ;
ASSERT_BINARYOP_OK (accum, "accum for C+=B", GB0) ;
ASSERT (!GB_OP_IS_POSITIONAL (accum)) ;
ASSERT (B->vlen == C->vlen) ;
ASSERT (B->vdim == C->vdim) ;
GB_ENSURE_FULL (C) ; // convert C to full, if sparsity control allows it
//--------------------------------------------------------------------------
// get the operator
//--------------------------------------------------------------------------
if (accum->opcode == GB_FIRST_binop_code || C->iso)
{
// nothing to do
return (GrB_SUCCESS) ;
}
// C = accum (C,B) will be computed
ASSERT (C->type == accum->ztype) ;
ASSERT (C->type == accum->xtype) ;
ASSERT (GB_Type_compatible (B->type, accum->ytype)) ;
//--------------------------------------------------------------------------
// determine the number of threads to use
//--------------------------------------------------------------------------
GB_GET_NTHREADS_MAX (nthreads_max, chunk, Context) ;
//--------------------------------------------------------------------------
// slice the entries for each task
//--------------------------------------------------------------------------
GB_WERK_DECLARE (B_ek_slicing, int64_t) ;
int B_ntasks, B_nthreads ;
if (GB_IS_BITMAP (B) || GB_as_if_full (B))
{
// C is dense and B is bitmap or as-if-full
GBURBLE ("(Z bitmap/as-if-full) ") ;
int64_t bnvec = B->nvec ;
int64_t bnz = GB_nnz_held (B) ;
B_nthreads = GB_nthreads (bnz + bnvec, chunk, nthreads_max) ;
B_ntasks = 0 ; // unused
ASSERT (B_ek_slicing == NULL) ;
}
else
{
// create tasks to compute over the matrix B
GB_SLICE_MATRIX (B, 32, chunk) ;
ASSERT (B_ek_slicing != NULL) ;
}
//--------------------------------------------------------------------------
// C += B, sparse accum into dense, with built-in binary operators
//--------------------------------------------------------------------------
bool done = false ;
#ifndef GBCUDA_DEV
//----------------------------------------------------------------------
// define the worker for the switch factory
//----------------------------------------------------------------------
#define GB_Cdense_accumB(accum,xname) \
GB (_Cdense_accumB_ ## accum ## xname)
#define GB_BINOP_WORKER(accum,xname) \
{ \
info = GB_Cdense_accumB(accum,xname) (C, B, \
B_ek_slicing, B_ntasks, B_nthreads) ; \
done = (info != GrB_NO_VALUE) ; \
} \
break ;
//----------------------------------------------------------------------
// launch the switch factory
//----------------------------------------------------------------------
GB_Opcode opcode ;
GB_Type_code xcode, ycode, zcode ;
if (GB_binop_builtin (C->type, false, B->type, false, // C = C + B
accum, false, &opcode, &xcode, &ycode, &zcode))
{
// accumulate sparse matrix into dense matrix with built-in operator
#include "GB_binop_factory.c"
}
#endif
//--------------------------------------------------------------------------
// C += B, sparse accum into dense, with typecasting or user-defined op
//--------------------------------------------------------------------------
if (!done)
{
//----------------------------------------------------------------------
// get operators, functions, workspace, contents of B and C
//----------------------------------------------------------------------
GB_BURBLE_MATRIX (B, "(generic C+=B) ") ;
GxB_binary_function fadd = accum->binop_function ;
size_t csize = C->type->size ;
size_t bsize = B->type->size ;
size_t ysize = accum->ytype->size ;
GB_cast_function cast_B_to_Y ;
// B is typecasted to y
cast_B_to_Y = GB_cast_factory (accum->ytype->code, B->type->code) ;
//----------------------------------------------------------------------
// C += B via function pointers, and typecasting
//----------------------------------------------------------------------
// bij = B(i,j), located in Bx [pB]. Note that GB_GETB is used,
// since B appears as the 2nd input to z = fadd (x,y)
#define GB_GETB(bij,Bx,pB,B_iso) \
GB_void bij [GB_VLA(ysize)] ; \
cast_B_to_Y (bij, Bx +(B_iso ? 0:(pB)*bsize), bsize)
// address of Cx [p]
#define GB_CX(p) Cx +((p)*csize)
#define GB_BTYPE GB_void
#define GB_CTYPE GB_void
// no vectorization
#define GB_PRAGMA_SIMD_VECTORIZE ;
#define GB_BINOP(z,x,y,i,j) fadd (z,x,y)
#include "GB_dense_subassign_23_template.c"
}
//--------------------------------------------------------------------------
// free workspace and return result
//--------------------------------------------------------------------------
GB_FREE_ALL ;
ASSERT_MATRIX_OK (C, "C+=B output", GB0) ;
return (GrB_SUCCESS) ;
}
|