1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
|
//------------------------------------------------------------------------------
// GB_dense_subassign_25: C(:,:)<M,s> = A; C empty, A dense, M structural
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// Method 25: C(:,:)<M,s> = A ; C is empty, M structural, A bitmap/as-if-full
// M: present
// Mask_comp: false
// Mask_struct: true
// C_replace: effectively false (not relevant since C is empty)
// accum: NULL
// A: matrix
// S: none
// C and M are sparse or hypersparse. A can have any sparsity structure, even
// bitmap, but it must either be bitmap, or as-if-full. M may be jumbled. If
// so, C is constructed as jumbled. C is reconstructed with the same structure
// as M and can have any sparsity structure on input. The only constraint on C
// is nnz(C) is zero on input.
// C is iso if A is iso
#include "GB_subassign_methods.h"
#include "GB_dense.h"
#ifndef GBCUDA_DEV
#include "GB_type__include.h"
#endif
#undef GB_FREE_ALL
#define GB_FREE_ALL \
{ \
GB_WERK_POP (M_ek_slicing, int64_t) ; \
}
GrB_Info GB_dense_subassign_25
(
GrB_Matrix C,
// input:
const GrB_Matrix M,
const GrB_Matrix A,
GB_Context Context
)
{
//--------------------------------------------------------------------------
// check inputs
//--------------------------------------------------------------------------
ASSERT (!GB_IS_BITMAP (M)) ; ASSERT (!GB_IS_FULL (M)) ;
ASSERT (!GB_aliased (C, M)) ; // NO ALIAS of C==M
ASSERT (!GB_aliased (C, A)) ; // NO ALIAS of C==A
//--------------------------------------------------------------------------
// get inputs
//--------------------------------------------------------------------------
GrB_Info info ;
ASSERT_MATRIX_OK (C, "C for subassign method_25", GB0) ;
ASSERT (GB_nnz (C) == 0) ;
ASSERT (!GB_ZOMBIES (C)) ;
ASSERT (!GB_JUMBLED (C)) ;
ASSERT (!GB_PENDING (C)) ;
ASSERT_MATRIX_OK (M, "M for subassign method_25", GB0) ;
ASSERT (!GB_ZOMBIES (M)) ;
ASSERT (GB_JUMBLED_OK (M)) ;
ASSERT (!GB_PENDING (M)) ;
ASSERT_MATRIX_OK (A, "A for subassign method_25", GB0) ;
ASSERT (GB_as_if_full (A) || GB_IS_BITMAP (A)) ;
const GB_Type_code ccode = C->type->code ;
const GB_Type_code acode = A->type->code ;
const size_t asize = A->type->size ;
const bool C_iso = A->iso ; // C is iso if A is iso
//--------------------------------------------------------------------------
// Method 25: C(:,:)<M> = A ; C is empty, A is dense, M is structural
//--------------------------------------------------------------------------
// Time: Optimal: the method must iterate over all entries in M,
// and the time is O(nnz(M)). This is also the size of C.
//--------------------------------------------------------------------------
// Parallel: slice M into equal-sized chunks
//--------------------------------------------------------------------------
GB_GET_NTHREADS_MAX (nthreads_max, chunk, Context) ;
//--------------------------------------------------------------------------
// slice the entries for each task
//--------------------------------------------------------------------------
GB_WERK_DECLARE (M_ek_slicing, int64_t) ;
int M_nthreads, M_ntasks ;
GB_SLICE_MATRIX (M, 8, chunk) ;
//--------------------------------------------------------------------------
// allocate C and create its pattern
//--------------------------------------------------------------------------
// clear prior content and then create a copy of the pattern of M. Keep
// the same type and CSR/CSC for C. Allocate the values of C but do not
// initialize them.
bool C_is_csc = C->is_csc ;
GB_phybix_free (C) ;
// set C->iso = C_iso OK
GB_OK (GB_dup_worker (&C, C_iso, M, false, C->type, Context)) ;
C->is_csc = C_is_csc ;
//--------------------------------------------------------------------------
// C<M> = A for built-in types
//--------------------------------------------------------------------------
if (C_iso)
{
//----------------------------------------------------------------------
// C is iso; assign the iso value and assign zombies if A is bitmap
//----------------------------------------------------------------------
#define GB_ISO_ASSIGN
GB_cast_scalar (C->x, ccode, A->x, acode, asize) ;
#include "GB_dense_subassign_25_template.c"
}
else
{
//----------------------------------------------------------------------
// C is non-iso; assign values and pattern from A, through the mask
//----------------------------------------------------------------------
bool done = false ;
#ifndef GBCUDA_DEV
//------------------------------------------------------------------
// define the worker for the switch factory
//------------------------------------------------------------------
#define GB_Cdense_25(cname) GB (_Cdense_25_ ## cname)
#define GB_WORKER(cname) \
{ \
info = GB_Cdense_25(cname) (C, M, A, \
M_ek_slicing, M_ntasks, M_nthreads) ; \
done = (info != GrB_NO_VALUE) ; \
} \
break ;
//------------------------------------------------------------------
// launch the switch factory
//------------------------------------------------------------------
if (C->type == A->type && ccode < GB_UDT_code)
{
// FUTURE: use cases 1,2,4,8,16
// C<M> = A
switch (ccode)
{
case GB_BOOL_code : GB_WORKER (_bool )
case GB_INT8_code : GB_WORKER (_int8 )
case GB_INT16_code : GB_WORKER (_int16 )
case GB_INT32_code : GB_WORKER (_int32 )
case GB_INT64_code : GB_WORKER (_int64 )
case GB_UINT8_code : GB_WORKER (_uint8 )
case GB_UINT16_code : GB_WORKER (_uint16)
case GB_UINT32_code : GB_WORKER (_uint32)
case GB_UINT64_code : GB_WORKER (_uint64)
case GB_FP32_code : GB_WORKER (_fp32 )
case GB_FP64_code : GB_WORKER (_fp64 )
case GB_FC32_code : GB_WORKER (_fc32 )
case GB_FC64_code : GB_WORKER (_fc64 )
default: ;
}
}
#endif
//----------------------------------------------------------------------
// C<M> = A for user-defined types, and typecasting
//----------------------------------------------------------------------
if (!done)
{
//-----------------------------------------------------------------
// get operators, functions, workspace, contents of A and C
//------------------------------------------------------------------
GB_BURBLE_MATRIX (A, "(generic C(:,:)<M,struct>=A assign, "
"method 25) ") ;
const size_t csize = C->type->size ;
GB_cast_function cast_A_to_C = GB_cast_factory (ccode, acode) ;
// Cx [pC] = (ctype) Ax [pA]
#define GB_COPY_A_TO_C(Cx,pC,Ax,pA,A_iso) \
cast_A_to_C (Cx+((pC)*csize), Ax+(A_iso?0:(pA)*asize), asize)
#define GB_CTYPE GB_void
#define GB_ATYPE GB_void
// no vectorization
#define GB_PRAGMA_SIMD_VECTORIZE ;
#include "GB_dense_subassign_25_template.c"
}
}
//--------------------------------------------------------------------------
// free workspace and return result
//--------------------------------------------------------------------------
GB_FREE_ALL ;
ASSERT_MATRIX_OK (C, "C output for subassign method_25", GB0) ;
ASSERT (GB_ZOMBIES_OK (C)) ;
ASSERT (GB_JUMBLED_OK (C)) ;
ASSERT (!GB_PENDING (C)) ;
return (GrB_SUCCESS) ;
}
|