1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
|
//------------------------------------------------------------------------------
// GB_emult_02: C = A.*B where A is sparse/hyper and B is bitmap/full
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// C = A.*B where A is sparse/hyper and B is bitmap/full constructs C with
// the same sparsity structure as A. This method can also be called with
// the two input matrices swapped, with flipxy true, to handle the case
// where A is bitmap/full and B is sparse/hyper.
// When no mask is present, or the mask is applied later, this method handles
// the following cases:
// ------------------------------------------
// C = A .* B
// ------------------------------------------
// sparse . sparse bitmap
// sparse . sparse full
// sparse . bitmap sparse
// sparse . full sparse
// If M is sparse/hyper and complemented, it is not passed here:
// ------------------------------------------
// C <!M>= A .* B
// ------------------------------------------
// sparse sparse sparse bitmap (mask later)
// sparse sparse sparse full (mask later)
// sparse sparse bitmap sparse (mask later)
// sparse sparse full sparse (mask later)
// If M is present, it is bitmap/full:
// ------------------------------------------
// C <M> = A .* B
// ------------------------------------------
// sparse bitmap sparse bitmap
// sparse bitmap sparse full
// sparse bitmap bitmap sparse
// sparse bitmap full sparse
// ------------------------------------------
// C <M> = A .* B
// ------------------------------------------
// sparse full sparse bitmap
// sparse full sparse full
// sparse full bitmap sparse
// sparse full full sparse
// ------------------------------------------
// C <!M> = A .* B
// ------------------------------------------
// sparse bitmap sparse bitmap
// sparse bitmap sparse full
// sparse bitmap bitmap sparse
// sparse bitmap full sparse
// ------------------------------------------
// C <!M> = A .* B
// ------------------------------------------
// sparse full sparse bitmap
// sparse full sparse full
// sparse full bitmap sparse
// sparse full full sparse
#include "GB_ewise.h"
#include "GB_emult.h"
#include "GB_binop.h"
#include "GB_unused.h"
#include "GB_stringify.h"
#ifndef GBCUDA_DEV
#include "GB_binop__include.h"
#endif
#define GB_FREE_WORKSPACE \
{ \
GB_WERK_POP (Work, int64_t) ; \
GB_WERK_POP (A_ek_slicing, int64_t) ; \
}
#define GB_FREE_ALL \
{ \
GB_FREE_WORKSPACE ; \
GB_phybix_free (C) ; \
}
GrB_Info GB_emult_02 // C=A.*B when A is sparse/hyper, B bitmap/full
(
GrB_Matrix C, // output matrix, static header
const GrB_Type ctype, // type of output matrix C
const bool C_is_csc, // format of output matrix C
const GrB_Matrix M, // optional mask, unused if NULL
const bool Mask_struct, // if true, use the only structure of M
const bool Mask_comp, // if true, use !M
const GrB_Matrix A, // input A matrix (sparse/hyper)
const GrB_Matrix B, // input B matrix (bitmap/full)
GrB_BinaryOp op, // op to perform C = op (A,B)
bool flipxy, // if true use fmult(y,x) else fmult(x,y)
GB_Context Context
)
{
//--------------------------------------------------------------------------
// check inputs
//--------------------------------------------------------------------------
GrB_Info info ;
ASSERT (C != NULL && (C->static_header || GBNSTATIC)) ;
ASSERT_MATRIX_OK_OR_NULL (M, "M for emult_02", GB0) ;
ASSERT_MATRIX_OK (A, "A for emult_02", GB0) ;
ASSERT_MATRIX_OK (B, "B for emult_02", GB0) ;
ASSERT_BINARYOP_OK (op, "op for emult_02", GB0) ;
ASSERT_TYPE_OK (ctype, "ctype for emult_02", GB0) ;
ASSERT (GB_IS_SPARSE (A) || GB_IS_HYPERSPARSE (A)) ;
ASSERT (!GB_PENDING (A)) ;
ASSERT (GB_JUMBLED_OK (A)) ;
ASSERT (!GB_ZOMBIES (A)) ;
ASSERT (GB_IS_BITMAP (B) || GB_IS_FULL (B)) ;
ASSERT (M == NULL || GB_IS_BITMAP (B) || GB_IS_FULL (B)) ;
int C_sparsity = GB_sparsity (A) ;
if (M == NULL)
{
GBURBLE ("emult_02:(%s=%s.*%s)",
GB_sparsity_char (C_sparsity),
GB_sparsity_char_matrix (A),
GB_sparsity_char_matrix (B)) ;
}
else
{
GBURBLE ("emult_02:(%s<%s%s%s>=%s.*%s) ",
GB_sparsity_char (C_sparsity),
Mask_comp ? "!" : "",
GB_sparsity_char_matrix (M),
Mask_struct ? ",struct" : "",
GB_sparsity_char_matrix (A),
GB_sparsity_char_matrix (B)) ;
}
//--------------------------------------------------------------------------
// revise the operator to handle flipxy
//--------------------------------------------------------------------------
// Replace the ANY operator with SECOND. ANY and SECOND give the same
// result if flipxy is false. However, SECOND is changed to FIRST if
// flipxy is true. This ensures that the results do not depend on the
// sparsity structures of A and B.
if (op->opcode == GB_ANY_binop_code)
{
switch (op->xtype->code)
{
case GB_BOOL_code : op = GrB_SECOND_BOOL ; break ;
case GB_INT8_code : op = GrB_SECOND_INT8 ; break ;
case GB_INT16_code : op = GrB_SECOND_INT16 ; break ;
case GB_INT32_code : op = GrB_SECOND_INT32 ; break ;
case GB_INT64_code : op = GrB_SECOND_INT64 ; break ;
case GB_UINT8_code : op = GrB_SECOND_UINT8 ; break ;
case GB_UINT16_code : op = GrB_SECOND_UINT16 ; break ;
case GB_UINT32_code : op = GrB_SECOND_UINT32 ; break ;
case GB_UINT64_code : op = GrB_SECOND_UINT64 ; break ;
case GB_FP32_code : op = GrB_SECOND_FP32 ; break ;
case GB_FP64_code : op = GrB_SECOND_FP64 ; break ;
case GB_FC32_code : op = GxB_SECOND_FC32 ; break ;
case GB_FC64_code : op = GxB_SECOND_FC64 ; break ;
default: ;
}
}
// handle the flipxy
op = GB_flip_binop (op, true, &flipxy) ;
ASSERT_BINARYOP_OK (op, "final op for emult_02", GB0) ;
//--------------------------------------------------------------------------
// declare workspace
//--------------------------------------------------------------------------
GB_WERK_DECLARE (Work, int64_t) ;
int64_t *restrict Wfirst = NULL ;
int64_t *restrict Wlast = NULL ;
int64_t *restrict Cp_kfirst = NULL ;
GB_WERK_DECLARE (A_ek_slicing, int64_t) ;
//--------------------------------------------------------------------------
// get M, A, and B
//--------------------------------------------------------------------------
const int8_t *restrict Mb = (M == NULL) ? NULL : M->b ;
const GB_void *restrict Mx = (M == NULL || Mask_struct) ? NULL :
(const GB_void *) M->x ;
const size_t msize = (M == NULL) ? 0 : M->type->size ;
const int64_t *restrict Ap = A->p ;
const int64_t *restrict Ah = A->h ;
const int64_t *restrict Ai = A->i ;
const int64_t vlen = A->vlen ;
const int64_t vdim = A->vdim ;
const int64_t nvec = A->nvec ;
const int64_t anz = GB_nnz (A) ;
const int8_t *restrict Bb = B->b ;
const bool B_is_bitmap = GB_IS_BITMAP (B) ;
//--------------------------------------------------------------------------
// check if C is iso and compute its iso value if it is
//--------------------------------------------------------------------------
const size_t csize = ctype->size ;
GB_void cscalar [GB_VLA(csize)] ;
bool C_iso = GB_iso_emult (cscalar, ctype, A, B, op) ;
#ifdef GB_DEBUGIFY_DEFN
GB_debugify_ewise (C_iso, C_sparsity, ctype, M,
Mask_struct, Mask_comp, op, flipxy, A, B) ;
#endif
//--------------------------------------------------------------------------
// allocate C->p and C->h
//--------------------------------------------------------------------------
GB_OK (GB_new (&C, // sparse or hyper (same as A), existing header
ctype, vlen, vdim, GB_Ap_calloc, C_is_csc,
C_sparsity, A->hyper_switch, nvec, Context)) ;
int64_t *restrict Cp = C->p ;
//--------------------------------------------------------------------------
// slice the input matrix A
//--------------------------------------------------------------------------
int A_nthreads, A_ntasks ;
GB_GET_NTHREADS_MAX (nthreads_max, chunk, Context) ;
GB_SLICE_MATRIX (A, 8, chunk) ;
//--------------------------------------------------------------------------
// count entries in C
//--------------------------------------------------------------------------
C->nvec_nonempty = A->nvec_nonempty ;
C->nvec = nvec ;
const bool C_has_pattern_of_A = !B_is_bitmap && (M == NULL) ;
if (!C_has_pattern_of_A)
{
//----------------------------------------------------------------------
// allocate workspace
//----------------------------------------------------------------------
GB_WERK_PUSH (Work, 3*A_ntasks, int64_t) ;
if (Work == NULL)
{
// out of memory
GB_FREE_ALL ;
return (GrB_OUT_OF_MEMORY) ;
}
Wfirst = Work ;
Wlast = Work + A_ntasks ;
Cp_kfirst = Work + A_ntasks * 2 ;
//----------------------------------------------------------------------
// count entries in C
//----------------------------------------------------------------------
// This phase is very similar to GB_select_phase1 (GB_ENTRY_SELECTOR).
if (M == NULL)
{
//------------------------------------------------------------------
// Method2(a): C = A.*B where A is sparse/hyper and B is bitmap
//------------------------------------------------------------------
ASSERT (B_is_bitmap) ;
int tid ;
#pragma omp parallel for num_threads(A_nthreads) schedule(dynamic,1)
for (tid = 0 ; tid < A_ntasks ; tid++)
{
int64_t kfirst = kfirst_Aslice [tid] ;
int64_t klast = klast_Aslice [tid] ;
Wfirst [tid] = 0 ;
Wlast [tid] = 0 ;
for (int64_t k = kfirst ; k <= klast ; k++)
{
// count the entries in C(:,j)
int64_t j = GBH (Ah, k) ;
int64_t pB_start = j * vlen ;
int64_t pA, pA_end ;
GB_get_pA (&pA, &pA_end, tid, k,
kfirst, klast, pstart_Aslice, Ap, vlen) ;
int64_t cjnz = 0 ;
for ( ; pA < pA_end ; pA++)
{
cjnz += Bb [pB_start + Ai [pA]] ;
}
if (k == kfirst)
{
Wfirst [tid] = cjnz ;
}
else if (k == klast)
{
Wlast [tid] = cjnz ;
}
else
{
Cp [k] = cjnz ;
}
}
}
}
else
{
//------------------------------------------------------------------
// Method2(c): C<#M> = A.*B; M, B bitmap/full, A is sparse/hyper
//------------------------------------------------------------------
ASSERT (M != NULL) ;
int tid ;
#pragma omp parallel for num_threads(A_nthreads) schedule(dynamic,1)
for (tid = 0 ; tid < A_ntasks ; tid++)
{
int64_t kfirst = kfirst_Aslice [tid] ;
int64_t klast = klast_Aslice [tid] ;
Wfirst [tid] = 0 ;
Wlast [tid] = 0 ;
for (int64_t k = kfirst ; k <= klast ; k++)
{
// count the entries in C(:,j)
int64_t j = GBH (Ah, k) ;
int64_t pB_start = j * vlen ;
int64_t pA, pA_end ;
GB_get_pA (&pA, &pA_end, tid, k,
kfirst, klast, pstart_Aslice, Ap, vlen) ;
int64_t cjnz = 0 ;
for ( ; pA < pA_end ; pA++)
{
int64_t i = Ai [pA] ;
int64_t pB = pB_start + i ;
bool mij = GBB (Mb, pB) && GB_mcast (Mx, pB, msize) ;
mij = mij ^ Mask_comp ;
cjnz += (mij && GBB (Bb, pB)) ;
}
if (k == kfirst)
{
Wfirst [tid] = cjnz ;
}
else if (k == klast)
{
Wlast [tid] = cjnz ;
}
else
{
Cp [k] = cjnz ;
}
}
}
}
//----------------------------------------------------------------------
// finalize Cp, cumulative sum of Cp and compute Cp_kfirst
//----------------------------------------------------------------------
GB_ek_slice_merge1 (Cp, Wfirst, Wlast, A_ek_slicing, A_ntasks) ;
GB_ek_slice_merge2 (&(C->nvec_nonempty), Cp_kfirst, Cp, nvec,
Wfirst, Wlast, A_ek_slicing, A_ntasks, A_nthreads, Context) ;
}
//--------------------------------------------------------------------------
// allocate C->i and C->x
//--------------------------------------------------------------------------
int64_t cnz = (C_has_pattern_of_A) ? anz : Cp [nvec] ;
// set C->iso = C_iso OK
GB_OK (GB_bix_alloc (C, cnz, GxB_SPARSE, false, true, C_iso, Context)) ;
//--------------------------------------------------------------------------
// copy pattern into C
//--------------------------------------------------------------------------
// TODO: could make these components of C shallow instead of memcpy
if (GB_IS_HYPERSPARSE (A))
{
// copy A->h into C->h
GB_memcpy (C->h, Ah, nvec * sizeof (int64_t), A_nthreads) ;
}
if (C_has_pattern_of_A)
{
// Method2(b): B is full and no mask present, so the pattern of C is
// the same as the pattern of A
GB_memcpy (Cp, Ap, (nvec+1) * sizeof (int64_t), A_nthreads) ;
GB_memcpy (C->i, Ai, cnz * sizeof (int64_t), A_nthreads) ;
}
C->nvals = cnz ;
C->jumbled = A->jumbled ;
C->magic = GB_MAGIC ;
//--------------------------------------------------------------------------
// get the opcode
//--------------------------------------------------------------------------
// if flipxy was true on input and the op is positional, FIRST, SECOND, or
// PAIR, the op has already been flipped, so these tests do not have to
// consider that case.
GB_Opcode opcode = op->opcode ;
bool op_is_positional = GB_OPCODE_IS_POSITIONAL (opcode) ;
bool op_is_first = (opcode == GB_FIRST_binop_code) ;
bool op_is_second = (opcode == GB_SECOND_binop_code) ;
bool op_is_pair = (opcode == GB_PAIR_binop_code) ;
GB_Type_code ccode = ctype->code ;
//--------------------------------------------------------------------------
// check if the values of A and/or B are ignored
//--------------------------------------------------------------------------
// With C = ewisemult (A,B), only the intersection of A and B is used.
// If op is SECOND or PAIR, the values of A are never accessed.
// If op is FIRST or PAIR, the values of B are never accessed.
// If op is PAIR, the values of A and B are never accessed.
// Contrast with ewiseadd.
// A is passed as x, and B as y, in z = op(x,y)
bool A_is_pattern = op_is_second || op_is_pair || op_is_positional ;
bool B_is_pattern = op_is_first || op_is_pair || op_is_positional ;
//--------------------------------------------------------------------------
// using a built-in binary operator (except for positional operators)
//--------------------------------------------------------------------------
#define GB_PHASE_2_OF_2
bool done = false ;
if (C_iso)
{
//----------------------------------------------------------------------
// C is iso
//----------------------------------------------------------------------
// Cx [0] = cscalar = op (A,B)
GB_BURBLE_MATRIX (C, "(iso emult) ") ;
memcpy (C->x, cscalar, csize) ;
// pattern of C = set intersection of pattern of A and B
// flipxy is ignored since the operator is not applied
#define GB_ISO_EMULT
#include "GB_emult_02_template.c"
done = true ;
}
else
{
#ifndef GBCUDA_DEV
//------------------------------------------------------------------
// define the worker for the switch factory
//------------------------------------------------------------------
#define GB_AemultB_02(mult,xname) GB (_AemultB_02_ ## mult ## xname)
#define GB_BINOP_WORKER(mult,xname) \
{ \
info = GB_AemultB_02(mult,xname) (C, \
M, Mask_struct, Mask_comp, A, B, flipxy, \
Cp_kfirst, A_ek_slicing, A_ntasks, A_nthreads) ; \
done = (info != GrB_NO_VALUE) ; \
} \
break ;
//------------------------------------------------------------------
// launch the switch factory
//------------------------------------------------------------------
// flipxy is not passed to GB_binop_builtin, since the unflippable
// binary ops (atan2, pow, etc) handle the flip themselves.
// See for example Generated2/GB_binop__atan2_fp32.c.
GB_Type_code xcode, ycode, zcode ;
if (!op_is_positional &&
GB_binop_builtin (A->type, A_is_pattern, B->type, B_is_pattern,
op, false, &opcode, &xcode, &ycode, &zcode) && ccode == zcode)
{
#define GB_NO_PAIR
#include "GB_binop_factory.c"
}
#endif
}
//--------------------------------------------------------------------------
// generic worker
//--------------------------------------------------------------------------
if (!done)
{
GB_BURBLE_MATRIX (C, "(generic emult_02: %s) ", op->name) ;
int ewise_method = flipxy ? GB_EMULT_METHOD3 : GB_EMULT_METHOD2 ;
GB_ewise_generic (C, op, NULL, 0, 0,
NULL, NULL, NULL, C_sparsity, ewise_method, Cp_kfirst,
NULL, 0, 0, A_ek_slicing, A_ntasks, A_nthreads, NULL, 0, 0,
M, Mask_struct, Mask_comp, A, B, Context) ;
}
//--------------------------------------------------------------------------
// remove empty vectors from C, if hypersparse
//--------------------------------------------------------------------------
GB_OK (GB_hypermatrix_prune (C, Context)) ;
//--------------------------------------------------------------------------
// free workspace and return result
//--------------------------------------------------------------------------
GB_FREE_WORKSPACE ;
ASSERT_MATRIX_OK (C, "C output for emult_02", GB0) ;
return (GrB_SUCCESS) ;
}
|