File: GB_emult_04.c

package info (click to toggle)
suitesparse-graphblas 7.4.0%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 67,112 kB
  • sloc: ansic: 1,072,243; cpp: 8,081; sh: 512; makefile: 506; asm: 369; python: 125; awk: 10
file content (362 lines) | stat: -rw-r--r-- 13,928 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
//------------------------------------------------------------------------------
// GB_emult_04: C<M>= A.*B, M sparse/hyper, A and B bitmap/full
//------------------------------------------------------------------------------

// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

//------------------------------------------------------------------------------

// C<M>= A.*B, M sparse/hyper, A and B bitmap/full.  C has the same sparsity
// structure as M, and its pattern is a subset of M.

            //      ------------------------------------------
            //      C       <M>=        A       .*      B
            //      ------------------------------------------
            //      sparse  sparse      bitmap          bitmap  (method: 04)
            //      sparse  sparse      bitmap          full    (method: 04)
            //      sparse  sparse      full            bitmap  (method: 04)
            //      sparse  sparse      full            full    (method: 04)

// TODO: this function can also do eWiseAdd, just as easily.
// Just change the "&&" to "||" in the GB_emult_04_template. 
// If A and B are both full, eadd and emult are identical.

#include "GB_ewise.h"
#include "GB_emult.h"
#include "GB_binop.h"
#include "GB_unused.h"
#include "GB_stringify.h"
#ifndef GBCUDA_DEV
#include "GB_binop__include.h"
#endif

#define GB_FREE_WORKSPACE                   \
{                                           \
    GB_WERK_POP (Work, int64_t) ;           \
    GB_WERK_POP (M_ek_slicing, int64_t) ;   \
}

#define GB_FREE_ALL                         \
{                                           \
    GB_FREE_WORKSPACE ;                     \
    GB_phybix_free (C) ;                    \
}

GrB_Info GB_emult_04        // C<M>=A.*B, M sparse/hyper, A and B bitmap/full
(
    GrB_Matrix C,           // output matrix, static header
    const GrB_Type ctype,   // type of output matrix C
    const bool C_is_csc,    // format of output matrix C
    const GrB_Matrix M,     // sparse/hyper, not NULL
    const bool Mask_struct, // if true, use the only structure of M
    bool *mask_applied,     // if true, the mask was applied
    const GrB_Matrix A,     // input A matrix (bitmap/full)
    const GrB_Matrix B,     // input B matrix (bitmap/full)
    const GrB_BinaryOp op,  // op to perform C = op (A,B)
    GB_Context Context
)
{

    //--------------------------------------------------------------------------
    // check inputs
    //--------------------------------------------------------------------------

    GrB_Info info ;
    ASSERT (C != NULL && (C->static_header || GBNSTATIC)) ;

    ASSERT_MATRIX_OK (M, "M for emult_04", GB0) ;
    ASSERT_MATRIX_OK (A, "A for emult_04", GB0) ;
    ASSERT_MATRIX_OK (B, "B for emult_04", GB0) ;
    ASSERT_BINARYOP_OK (op, "op for emult_04", GB0) ;

    ASSERT (GB_IS_SPARSE (M) || GB_IS_HYPERSPARSE (M)) ;
    ASSERT (!GB_PENDING (M)) ;
    ASSERT (GB_JUMBLED_OK (M)) ;
    ASSERT (!GB_ZOMBIES (M)) ;
    ASSERT (GB_IS_BITMAP (A) || GB_IS_FULL (A) || GB_as_if_full (A)) ;
    ASSERT (GB_IS_BITMAP (B) || GB_IS_FULL (B) || GB_as_if_full (B)) ;

    int C_sparsity = GB_sparsity (M) ;

    GBURBLE ("emult_04:(%s<%s>=%s.*%s) ",
        GB_sparsity_char (C_sparsity),
        GB_sparsity_char_matrix (M),
        GB_sparsity_char_matrix (A),
        GB_sparsity_char_matrix (B)) ;

    //--------------------------------------------------------------------------
    // declare workspace
    //--------------------------------------------------------------------------

    GB_WERK_DECLARE (Work, int64_t) ;
    int64_t *restrict Wfirst = NULL ;
    int64_t *restrict Wlast = NULL ;
    int64_t *restrict Cp_kfirst = NULL ;
    GB_WERK_DECLARE (M_ek_slicing, int64_t) ;

    //--------------------------------------------------------------------------
    // get M, A, and B
    //--------------------------------------------------------------------------

    const int64_t *restrict Mp = M->p ;
    const int64_t *restrict Mh = M->h ;
    const int64_t *restrict Mi = M->i ;
    const GB_void *restrict Mx = (Mask_struct) ? NULL : (GB_void *) M->x ;
    const int64_t vlen = M->vlen ;
    const int64_t vdim = M->vdim ;
    const int64_t nvec = M->nvec ;
    const int64_t mnz = GB_nnz (M) ;
    const size_t  msize = M->type->size ;

    const int8_t *restrict Ab = A->b ;
    const int8_t *restrict Bb = B->b ;

    //--------------------------------------------------------------------------
    // check if C is iso and compute its iso value if it is
    //--------------------------------------------------------------------------

    const size_t csize = ctype->size ;
    GB_void cscalar [GB_VLA(csize)] ;
    bool C_iso = GB_iso_emult (cscalar, ctype, A, B, op) ;

    #ifdef GB_DEBUGIFY_DEFN
    GB_debugify_ewise (C_iso, C_sparsity, ctype, M,
        Mask_struct, false, op, false, A, B) ;
    #endif

    //--------------------------------------------------------------------------
    // allocate C->p and C->h
    //--------------------------------------------------------------------------

    GB_OK (GB_new (&C, // sparse or hyper (same as M), existing header
        ctype, vlen, vdim, GB_Ap_calloc, C_is_csc,
        C_sparsity, M->hyper_switch, nvec, Context)) ;
    int64_t *restrict Cp = C->p ;

    //--------------------------------------------------------------------------
    // slice the mask matrix M
    //--------------------------------------------------------------------------

    GB_GET_NTHREADS_MAX (nthreads_max, chunk, Context) ;
    int M_ntasks, M_nthreads ;
    GB_SLICE_MATRIX (M, 8, chunk) ;

    //--------------------------------------------------------------------------
    // allocate workspace
    //--------------------------------------------------------------------------

    GB_WERK_PUSH (Work, 3*M_ntasks, int64_t) ;
    if (Work == NULL)
    { 
        // out of memory
        GB_FREE_ALL ;
        return (GrB_OUT_OF_MEMORY) ;
    }
    Wfirst    = Work ;
    Wlast     = Work + M_ntasks ;
    Cp_kfirst = Work + M_ntasks * 2 ;

    //--------------------------------------------------------------------------
    // count entries in C
    //--------------------------------------------------------------------------

    // This phase is very similar to GB_select_phase1 (GB_ENTRY_SELECTOR).

    // TODO: if M is structural and A and B are both full, then C has exactly
    // the same pattern as M, the first phase can be skipped.

    int tid ;
    #pragma omp parallel for num_threads(M_nthreads) schedule(dynamic,1)
    for (tid = 0 ; tid < M_ntasks ; tid++)
    {
        int64_t kfirst = kfirst_Mslice [tid] ;
        int64_t klast  = klast_Mslice  [tid] ;
        Wfirst [tid] = 0 ;
        Wlast  [tid] = 0 ;
        for (int64_t k = kfirst ; k <= klast ; k++)
        {
            // count the entries in C(:,j)
            int64_t j = GBH (Mh, k) ;
            int64_t pstart = j * vlen ;     // start of A(:,j) and B(:,j)
            int64_t pM, pM_end ;
            GB_get_pA (&pM, &pM_end, tid, k,
                kfirst, klast, pstart_Mslice, Mp, vlen) ;
            int64_t cjnz = 0 ;
            for ( ; pM < pM_end ; pM++)
            { 
                bool mij = GB_mcast (Mx, pM, msize) ;
                if (mij)
                {
                    int64_t i = Mi [pM] ;
                    cjnz +=
                        (GBB (Ab, pstart + i)
                        &&      // TODO: for GB_add, use || instead
                        GBB (Bb, pstart + i)) ;
                }
            }
            if (k == kfirst)
            { 
                Wfirst [tid] = cjnz ;
            }
            else if (k == klast)
            { 
                Wlast [tid] = cjnz ;
            }
            else
            { 
                Cp [k] = cjnz ; 
            }
        }
    }

    //--------------------------------------------------------------------------
    // finalize Cp, cumulative sum of Cp and compute Cp_kfirst
    //--------------------------------------------------------------------------

    GB_ek_slice_merge1 (Cp, Wfirst, Wlast, M_ek_slicing, M_ntasks) ;
    GB_ek_slice_merge2 (&(C->nvec_nonempty), Cp_kfirst, Cp, nvec,
        Wfirst, Wlast, M_ek_slicing, M_ntasks, M_nthreads, Context) ;

    //--------------------------------------------------------------------------
    // allocate C->i and C->x
    //--------------------------------------------------------------------------

    int64_t cnz = Cp [nvec] ;
    // set C->iso = C_iso   OK
    GB_OK (GB_bix_alloc (C, cnz, GxB_SPARSE, false, true, C_iso, Context)) ;

    //--------------------------------------------------------------------------
    // copy pattern into C
    //--------------------------------------------------------------------------

    // TODO: could make these components of C shallow instead

    if (GB_IS_HYPERSPARSE (M))
    { 
        // copy M->h into C->h
        GB_memcpy (C->h, Mh, nvec * sizeof (int64_t), M_nthreads) ;
    }

    C->nvec = nvec ;
    C->jumbled = M->jumbled ;
    C->nvals = cnz ;
    C->magic = GB_MAGIC ;

    //--------------------------------------------------------------------------
    // get the opcode
    //--------------------------------------------------------------------------

    GB_Opcode opcode = op->opcode ;
    bool op_is_positional = GB_OPCODE_IS_POSITIONAL (opcode) ;
    bool op_is_first  = (opcode == GB_FIRST_binop_code) ;
    bool op_is_second = (opcode == GB_SECOND_binop_code) ;
    bool op_is_pair   = (opcode == GB_PAIR_binop_code) ;
    GB_Type_code ccode = ctype->code ;

    //--------------------------------------------------------------------------
    // check if the values of A and/or B are ignored
    //--------------------------------------------------------------------------

    // With C = ewisemult (A,B), only the intersection of A and B is used.
    // If op is SECOND or PAIR, the values of A are never accessed.
    // If op is FIRST  or PAIR, the values of B are never accessed.
    // If op is PAIR, the values of A and B are never accessed.
    // Contrast with ewiseadd.

    // A is passed as x, and B as y, in z = op(x,y)
    bool A_is_pattern = op_is_second || op_is_pair || op_is_positional ;
    bool B_is_pattern = op_is_first  || op_is_pair || op_is_positional ;

    //--------------------------------------------------------------------------
    // using a built-in binary operator (except for positional operators)
    //--------------------------------------------------------------------------

    #define GB_PHASE_2_OF_2

    if (C_iso)
    { 

        //----------------------------------------------------------------------
        // C is iso
        //----------------------------------------------------------------------

        // Cx [0] = cscalar = op (A,B)
        GB_BURBLE_MATRIX (C, "(iso emult) ") ;
        memcpy (C->x, cscalar, csize) ;

        // pattern of C = set intersection of pattern of A and B
        #define GB_ISO_EMULT
        #include "GB_emult_04_template.c"

    }
    else
    {

        //----------------------------------------------------------------------
        // C is non-iso
        //----------------------------------------------------------------------

        bool done = false ;

        #ifndef GBCUDA_DEV

            //------------------------------------------------------------------
            // define the worker for the switch factory
            //------------------------------------------------------------------

            #define GB_AemultB_04(mult,xname) GB (_AemultB_04_ ## mult ## xname)

            #define GB_BINOP_WORKER(mult,xname)                             \
            {                                                               \
                info = GB_AemultB_04(mult,xname) (C, M, Mask_struct, A, B,  \
                    Cp_kfirst, M_ek_slicing, M_ntasks, M_nthreads) ;        \
                done = (info != GrB_NO_VALUE) ;                             \
            }                                                               \
            break ;

            //------------------------------------------------------------------
            // launch the switch factory
            //------------------------------------------------------------------

            GB_Type_code xcode, ycode, zcode ;
            if (!op_is_positional &&
                GB_binop_builtin (A->type, A_is_pattern, B->type, B_is_pattern,
                op, false, &opcode, &xcode, &ycode, &zcode) && ccode == zcode)
            { 
                #define GB_NO_PAIR
                #include "GB_binop_factory.c"
            }

        #endif

        //----------------------------------------------------------------------
        // generic worker
        //----------------------------------------------------------------------

        if (!done)
        { 
            GB_BURBLE_MATRIX (C, "(generic emult_04: %s) ", op->name) ;
            GB_ewise_generic (C, op, NULL, 0, 0,
                NULL, NULL, NULL, C_sparsity, GB_EMULT_METHOD4, Cp_kfirst,
                M_ek_slicing, M_ntasks, M_nthreads, NULL, 0, 0, NULL, 0, 0,
                M, Mask_struct, false, A, B, Context) ;
        }
    }

    //--------------------------------------------------------------------------
    // remove empty vectors from C, if hypersparse
    //--------------------------------------------------------------------------

    GB_OK (GB_hypermatrix_prune (C, Context)) ;

    //--------------------------------------------------------------------------
    // free workspace and return result
    //--------------------------------------------------------------------------

    GB_FREE_WORKSPACE ;
    ASSERT_MATRIX_OK (C, "C output for emult_04", GB0) ;
    (*mask_applied) = true ;
    return (GrB_SUCCESS) ;
}