1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
|
//------------------------------------------------------------------------------
// GB_emult_04: C<M>= A.*B, M sparse/hyper, A and B bitmap/full
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// C<M>= A.*B, M sparse/hyper, A and B bitmap/full. C has the same sparsity
// structure as M, and its pattern is a subset of M.
// ------------------------------------------
// C <M>= A .* B
// ------------------------------------------
// sparse sparse bitmap bitmap (method: 04)
// sparse sparse bitmap full (method: 04)
// sparse sparse full bitmap (method: 04)
// sparse sparse full full (method: 04)
// TODO: this function can also do eWiseAdd, just as easily.
// Just change the "&&" to "||" in the GB_emult_04_template.
// If A and B are both full, eadd and emult are identical.
#include "GB_ewise.h"
#include "GB_emult.h"
#include "GB_binop.h"
#include "GB_unused.h"
#include "GB_stringify.h"
#ifndef GBCUDA_DEV
#include "GB_binop__include.h"
#endif
#define GB_FREE_WORKSPACE \
{ \
GB_WERK_POP (Work, int64_t) ; \
GB_WERK_POP (M_ek_slicing, int64_t) ; \
}
#define GB_FREE_ALL \
{ \
GB_FREE_WORKSPACE ; \
GB_phybix_free (C) ; \
}
GrB_Info GB_emult_04 // C<M>=A.*B, M sparse/hyper, A and B bitmap/full
(
GrB_Matrix C, // output matrix, static header
const GrB_Type ctype, // type of output matrix C
const bool C_is_csc, // format of output matrix C
const GrB_Matrix M, // sparse/hyper, not NULL
const bool Mask_struct, // if true, use the only structure of M
bool *mask_applied, // if true, the mask was applied
const GrB_Matrix A, // input A matrix (bitmap/full)
const GrB_Matrix B, // input B matrix (bitmap/full)
const GrB_BinaryOp op, // op to perform C = op (A,B)
GB_Context Context
)
{
//--------------------------------------------------------------------------
// check inputs
//--------------------------------------------------------------------------
GrB_Info info ;
ASSERT (C != NULL && (C->static_header || GBNSTATIC)) ;
ASSERT_MATRIX_OK (M, "M for emult_04", GB0) ;
ASSERT_MATRIX_OK (A, "A for emult_04", GB0) ;
ASSERT_MATRIX_OK (B, "B for emult_04", GB0) ;
ASSERT_BINARYOP_OK (op, "op for emult_04", GB0) ;
ASSERT (GB_IS_SPARSE (M) || GB_IS_HYPERSPARSE (M)) ;
ASSERT (!GB_PENDING (M)) ;
ASSERT (GB_JUMBLED_OK (M)) ;
ASSERT (!GB_ZOMBIES (M)) ;
ASSERT (GB_IS_BITMAP (A) || GB_IS_FULL (A) || GB_as_if_full (A)) ;
ASSERT (GB_IS_BITMAP (B) || GB_IS_FULL (B) || GB_as_if_full (B)) ;
int C_sparsity = GB_sparsity (M) ;
GBURBLE ("emult_04:(%s<%s>=%s.*%s) ",
GB_sparsity_char (C_sparsity),
GB_sparsity_char_matrix (M),
GB_sparsity_char_matrix (A),
GB_sparsity_char_matrix (B)) ;
//--------------------------------------------------------------------------
// declare workspace
//--------------------------------------------------------------------------
GB_WERK_DECLARE (Work, int64_t) ;
int64_t *restrict Wfirst = NULL ;
int64_t *restrict Wlast = NULL ;
int64_t *restrict Cp_kfirst = NULL ;
GB_WERK_DECLARE (M_ek_slicing, int64_t) ;
//--------------------------------------------------------------------------
// get M, A, and B
//--------------------------------------------------------------------------
const int64_t *restrict Mp = M->p ;
const int64_t *restrict Mh = M->h ;
const int64_t *restrict Mi = M->i ;
const GB_void *restrict Mx = (Mask_struct) ? NULL : (GB_void *) M->x ;
const int64_t vlen = M->vlen ;
const int64_t vdim = M->vdim ;
const int64_t nvec = M->nvec ;
const int64_t mnz = GB_nnz (M) ;
const size_t msize = M->type->size ;
const int8_t *restrict Ab = A->b ;
const int8_t *restrict Bb = B->b ;
//--------------------------------------------------------------------------
// check if C is iso and compute its iso value if it is
//--------------------------------------------------------------------------
const size_t csize = ctype->size ;
GB_void cscalar [GB_VLA(csize)] ;
bool C_iso = GB_iso_emult (cscalar, ctype, A, B, op) ;
#ifdef GB_DEBUGIFY_DEFN
GB_debugify_ewise (C_iso, C_sparsity, ctype, M,
Mask_struct, false, op, false, A, B) ;
#endif
//--------------------------------------------------------------------------
// allocate C->p and C->h
//--------------------------------------------------------------------------
GB_OK (GB_new (&C, // sparse or hyper (same as M), existing header
ctype, vlen, vdim, GB_Ap_calloc, C_is_csc,
C_sparsity, M->hyper_switch, nvec, Context)) ;
int64_t *restrict Cp = C->p ;
//--------------------------------------------------------------------------
// slice the mask matrix M
//--------------------------------------------------------------------------
GB_GET_NTHREADS_MAX (nthreads_max, chunk, Context) ;
int M_ntasks, M_nthreads ;
GB_SLICE_MATRIX (M, 8, chunk) ;
//--------------------------------------------------------------------------
// allocate workspace
//--------------------------------------------------------------------------
GB_WERK_PUSH (Work, 3*M_ntasks, int64_t) ;
if (Work == NULL)
{
// out of memory
GB_FREE_ALL ;
return (GrB_OUT_OF_MEMORY) ;
}
Wfirst = Work ;
Wlast = Work + M_ntasks ;
Cp_kfirst = Work + M_ntasks * 2 ;
//--------------------------------------------------------------------------
// count entries in C
//--------------------------------------------------------------------------
// This phase is very similar to GB_select_phase1 (GB_ENTRY_SELECTOR).
// TODO: if M is structural and A and B are both full, then C has exactly
// the same pattern as M, the first phase can be skipped.
int tid ;
#pragma omp parallel for num_threads(M_nthreads) schedule(dynamic,1)
for (tid = 0 ; tid < M_ntasks ; tid++)
{
int64_t kfirst = kfirst_Mslice [tid] ;
int64_t klast = klast_Mslice [tid] ;
Wfirst [tid] = 0 ;
Wlast [tid] = 0 ;
for (int64_t k = kfirst ; k <= klast ; k++)
{
// count the entries in C(:,j)
int64_t j = GBH (Mh, k) ;
int64_t pstart = j * vlen ; // start of A(:,j) and B(:,j)
int64_t pM, pM_end ;
GB_get_pA (&pM, &pM_end, tid, k,
kfirst, klast, pstart_Mslice, Mp, vlen) ;
int64_t cjnz = 0 ;
for ( ; pM < pM_end ; pM++)
{
bool mij = GB_mcast (Mx, pM, msize) ;
if (mij)
{
int64_t i = Mi [pM] ;
cjnz +=
(GBB (Ab, pstart + i)
&& // TODO: for GB_add, use || instead
GBB (Bb, pstart + i)) ;
}
}
if (k == kfirst)
{
Wfirst [tid] = cjnz ;
}
else if (k == klast)
{
Wlast [tid] = cjnz ;
}
else
{
Cp [k] = cjnz ;
}
}
}
//--------------------------------------------------------------------------
// finalize Cp, cumulative sum of Cp and compute Cp_kfirst
//--------------------------------------------------------------------------
GB_ek_slice_merge1 (Cp, Wfirst, Wlast, M_ek_slicing, M_ntasks) ;
GB_ek_slice_merge2 (&(C->nvec_nonempty), Cp_kfirst, Cp, nvec,
Wfirst, Wlast, M_ek_slicing, M_ntasks, M_nthreads, Context) ;
//--------------------------------------------------------------------------
// allocate C->i and C->x
//--------------------------------------------------------------------------
int64_t cnz = Cp [nvec] ;
// set C->iso = C_iso OK
GB_OK (GB_bix_alloc (C, cnz, GxB_SPARSE, false, true, C_iso, Context)) ;
//--------------------------------------------------------------------------
// copy pattern into C
//--------------------------------------------------------------------------
// TODO: could make these components of C shallow instead
if (GB_IS_HYPERSPARSE (M))
{
// copy M->h into C->h
GB_memcpy (C->h, Mh, nvec * sizeof (int64_t), M_nthreads) ;
}
C->nvec = nvec ;
C->jumbled = M->jumbled ;
C->nvals = cnz ;
C->magic = GB_MAGIC ;
//--------------------------------------------------------------------------
// get the opcode
//--------------------------------------------------------------------------
GB_Opcode opcode = op->opcode ;
bool op_is_positional = GB_OPCODE_IS_POSITIONAL (opcode) ;
bool op_is_first = (opcode == GB_FIRST_binop_code) ;
bool op_is_second = (opcode == GB_SECOND_binop_code) ;
bool op_is_pair = (opcode == GB_PAIR_binop_code) ;
GB_Type_code ccode = ctype->code ;
//--------------------------------------------------------------------------
// check if the values of A and/or B are ignored
//--------------------------------------------------------------------------
// With C = ewisemult (A,B), only the intersection of A and B is used.
// If op is SECOND or PAIR, the values of A are never accessed.
// If op is FIRST or PAIR, the values of B are never accessed.
// If op is PAIR, the values of A and B are never accessed.
// Contrast with ewiseadd.
// A is passed as x, and B as y, in z = op(x,y)
bool A_is_pattern = op_is_second || op_is_pair || op_is_positional ;
bool B_is_pattern = op_is_first || op_is_pair || op_is_positional ;
//--------------------------------------------------------------------------
// using a built-in binary operator (except for positional operators)
//--------------------------------------------------------------------------
#define GB_PHASE_2_OF_2
if (C_iso)
{
//----------------------------------------------------------------------
// C is iso
//----------------------------------------------------------------------
// Cx [0] = cscalar = op (A,B)
GB_BURBLE_MATRIX (C, "(iso emult) ") ;
memcpy (C->x, cscalar, csize) ;
// pattern of C = set intersection of pattern of A and B
#define GB_ISO_EMULT
#include "GB_emult_04_template.c"
}
else
{
//----------------------------------------------------------------------
// C is non-iso
//----------------------------------------------------------------------
bool done = false ;
#ifndef GBCUDA_DEV
//------------------------------------------------------------------
// define the worker for the switch factory
//------------------------------------------------------------------
#define GB_AemultB_04(mult,xname) GB (_AemultB_04_ ## mult ## xname)
#define GB_BINOP_WORKER(mult,xname) \
{ \
info = GB_AemultB_04(mult,xname) (C, M, Mask_struct, A, B, \
Cp_kfirst, M_ek_slicing, M_ntasks, M_nthreads) ; \
done = (info != GrB_NO_VALUE) ; \
} \
break ;
//------------------------------------------------------------------
// launch the switch factory
//------------------------------------------------------------------
GB_Type_code xcode, ycode, zcode ;
if (!op_is_positional &&
GB_binop_builtin (A->type, A_is_pattern, B->type, B_is_pattern,
op, false, &opcode, &xcode, &ycode, &zcode) && ccode == zcode)
{
#define GB_NO_PAIR
#include "GB_binop_factory.c"
}
#endif
//----------------------------------------------------------------------
// generic worker
//----------------------------------------------------------------------
if (!done)
{
GB_BURBLE_MATRIX (C, "(generic emult_04: %s) ", op->name) ;
GB_ewise_generic (C, op, NULL, 0, 0,
NULL, NULL, NULL, C_sparsity, GB_EMULT_METHOD4, Cp_kfirst,
M_ek_slicing, M_ntasks, M_nthreads, NULL, 0, 0, NULL, 0, 0,
M, Mask_struct, false, A, B, Context) ;
}
}
//--------------------------------------------------------------------------
// remove empty vectors from C, if hypersparse
//--------------------------------------------------------------------------
GB_OK (GB_hypermatrix_prune (C, Context)) ;
//--------------------------------------------------------------------------
// free workspace and return result
//--------------------------------------------------------------------------
GB_FREE_WORKSPACE ;
ASSERT_MATRIX_OK (C, "C output for emult_04", GB0) ;
(*mask_applied) = true ;
return (GrB_SUCCESS) ;
}
|