File: GB_emult_phase0.c

package info (click to toggle)
suitesparse-graphblas 7.4.0%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 67,112 kB
  • sloc: ansic: 1,072,243; cpp: 8,081; sh: 512; makefile: 506; asm: 369; python: 125; awk: 10
file content (635 lines) | stat: -rw-r--r-- 20,371 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
//------------------------------------------------------------------------------
// GB_emult_phase0: find vectors of C to compute for C=A.*B or C<M>=A.*B
//------------------------------------------------------------------------------

// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

//------------------------------------------------------------------------------

// The eWise multiply of two matrices, C=A.*B, C<M>=A.*B, or C<!M>=A.*B starts
// with this phase, which determines which vectors of C need to be computed.

// On input, A and B are the two matrices being ewise multiplied, and M is the
// optional mask matrix.  If present, it is not complemented.

// The M, A, and B matrices are sparse or hypersparse.  C will be sparse
// (if Ch is returned NULL) or hypersparse (if Ch is returned non-NULL).

//      Ch: the vectors to compute in C.  Not allocated, but equal to either
//      A->h, B->h, or M->h, or NULL if C is not hypersparse.

//      C_to_A:  if A is hypersparse, and Ch is not A->h, then C_to_A [k] = kA
//      if the kth vector j = Ch [k] is equal to Ah [kA].  If j does not appear
//      in A, then C_to_A [k] = -1.  Otherwise, C_to_A is returned as NULL.
//      C is always hypersparse in this case.

//      C_to_B:  if B is hypersparse, and Ch is not B->h, then C_to_B [k] = kB
//      if the kth vector j = Ch [k] is equal to Bh [kB].  If j does not appear
//      in B, then C_to_B [k] = -1.  Otherwise, C_to_B is returned as NULL.
//      C is always hypersparse in this case.

//      C_to_M:  if M is hypersparse, and Ch is not M->h, then C_to_M [k] = kM
//      if the kth vector j = GBH (Ch, k) is equal to Mh [kM].
//      If j does not appear in M, then C_to_M [k] = -1.  Otherwise, C_to_M is
//      returned as NULL.  C is always hypersparse in this case.

// FUTURE:: exploit A==M, B==M, and A==B aliases

#define GB_FREE_ALL                             \
{                                               \
    GB_FREE_WORK (&C_to_M, C_to_M_size) ;       \
    GB_FREE_WORK (&C_to_A, C_to_A_size) ;       \
    GB_FREE_WORK (&C_to_B, C_to_B_size) ;       \
}

#include "GB_emult.h"

GrB_Info GB_emult_phase0     // find vectors in C for C=A.*B or C<M>=A.*B
(
    int64_t *p_Cnvec,           // # of vectors to compute in C
    const int64_t *restrict *Ch_handle,  // Ch is M->h, A->h, B->h, or NULL
    size_t *Ch_size_handle,
    int64_t *restrict *C_to_M_handle,    // C_to_M: size Cnvec, or NULL
    size_t *C_to_M_size_handle,
    int64_t *restrict *C_to_A_handle,    // C_to_A: size Cnvec, or NULL
    size_t *C_to_A_size_handle,
    int64_t *restrict *C_to_B_handle,    // C_to_B: size Cnvec, or NULL
    size_t *C_to_B_size_handle,
    int *C_sparsity,            // sparsity structure of C
    // original input:
    const GrB_Matrix M,         // optional mask, may be NULL
    const GrB_Matrix A,
    const GrB_Matrix B,
    GB_Context Context
)
{

    //--------------------------------------------------------------------------
    // check inputs
    //--------------------------------------------------------------------------

    // M, A, and B can be jumbled for this phase

    GrB_Info info ;
    ASSERT (p_Cnvec != NULL) ;
    ASSERT (Ch_handle != NULL) ;
    ASSERT (Ch_size_handle != NULL) ;
    ASSERT (C_to_A_handle != NULL) ;
    ASSERT (C_to_B_handle != NULL) ;

    ASSERT_MATRIX_OK_OR_NULL (M, "M for emult phase0", GB0) ;
    ASSERT (!GB_ZOMBIES (M)) ;
    ASSERT (GB_JUMBLED_OK (M)) ;        // pattern not accessed
    ASSERT (!GB_PENDING (M)) ;

    ASSERT_MATRIX_OK (A, "A for emult phase0", GB0) ;
    ASSERT (!GB_ZOMBIES (A)) ;
    ASSERT (GB_JUMBLED_OK (B)) ;        // pattern not accessed
    ASSERT (!GB_PENDING (A)) ;

    ASSERT_MATRIX_OK (B, "B for emult phase0", GB0) ;
    ASSERT (!GB_ZOMBIES (B)) ;
    ASSERT (GB_JUMBLED_OK (A)) ;        // pattern not accessed
    ASSERT (!GB_PENDING (B)) ;

    ASSERT (A->vdim == B->vdim) ;
    ASSERT (A->vlen == B->vlen) ;
    ASSERT (GB_IMPLIES (M != NULL, A->vdim == M->vdim)) ;
    ASSERT (GB_IMPLIES (M != NULL, A->vlen == M->vlen)) ;

    //--------------------------------------------------------------------------
    // initializations
    //--------------------------------------------------------------------------

    (*p_Cnvec) = 0 ;          
    (*Ch_handle) = NULL ;
    (*Ch_size_handle) = 0 ;
    if (C_to_M_handle != NULL)
    { 
        (*C_to_M_handle) = NULL ;
    }
    (*C_to_A_handle) = NULL ;
    (*C_to_B_handle) = NULL ;

    ASSERT ((*C_sparsity) == GxB_SPARSE || (*C_sparsity) == GxB_HYPERSPARSE) ;

    const int64_t *restrict Ch = NULL ; size_t Ch_size = 0 ;
    int64_t *restrict C_to_M = NULL ; size_t C_to_M_size = 0 ;
    int64_t *restrict C_to_A = NULL ; size_t C_to_A_size = 0 ;
    int64_t *restrict C_to_B = NULL ; size_t C_to_B_size = 0 ;

    //--------------------------------------------------------------------------
    // get content of M, A, and B
    //--------------------------------------------------------------------------

    int64_t n = A->vdim ;

    int64_t Anvec = A->nvec ;
    int64_t vlen  = A->vlen ;
    const int64_t *restrict Ah = A->h ;
    bool A_is_hyper = (Ah != NULL) ;

    int64_t Bnvec = B->nvec ;
    const int64_t *restrict Bh = B->h ;
    bool B_is_hyper = (Bh != NULL) ;

    int64_t Mnvec = 0 ;
    const int64_t *restrict Mh = NULL ;
    bool M_is_hyper = false ;

    if (M != NULL)
    { 
        Mnvec = M->nvec ;
        Mh = M->h ;
        M_is_hyper = (Mh != NULL) ;
    }

    //--------------------------------------------------------------------------
    // determine how to construct the vectors of C
    //--------------------------------------------------------------------------

    if (M != NULL)
    {

        //----------------------------------------------------------------------
        // 8 cases to consider: A, B, M can each be hyper or sparse
        //----------------------------------------------------------------------

        // Mask is present and not complemented

        if (A_is_hyper)
        {
            if (B_is_hyper)
            {
                if (M_is_hyper)
                {

                    //----------------------------------------------------------
                    // (1) A hyper, B hyper, M hyper: C hyper
                    //----------------------------------------------------------

                    // Ch = smaller of Mh, Bh, Ah

                    int64_t nvec = GB_IMIN (Anvec, Bnvec) ;
                    nvec = GB_IMIN (nvec, Mnvec) ;
                    if (nvec == Anvec)
                    { 
                        Ch = Ah ; Ch_size = A->h_size ;
                    }
                    else if (nvec == Bnvec)
                    { 
                        Ch = Bh ; Ch_size = B->h_size ;
                    }
                    else // (nvec == Mnvec)
                    { 
                        Ch = Mh ; Ch_size = M->h_size ;
                    }

                }
                else
                {

                    //----------------------------------------------------------
                    // (2) A hyper, B hyper, M sparse: C hyper
                    //----------------------------------------------------------

                    // Ch = smaller of Ah, Bh
                    if (Anvec <= Bnvec)
                    { 
                        Ch = Ah ; Ch_size = A->h_size ;
                    }
                    else
                    { 
                        Ch = Bh ; Ch_size = B->h_size ;
                    }
                }

            }
            else
            {

                if (M_is_hyper)
                {

                    //----------------------------------------------------------
                    // (3) A hyper, B sparse, M hyper: C hyper
                    //----------------------------------------------------------

                    // Ch = smaller of Mh, Ah
                    if (Anvec <= Mnvec)
                    { 
                        Ch = Ah ; Ch_size = A->h_size ;
                    }
                    else
                    { 
                        Ch = Mh ; Ch_size = M->h_size ;
                    }

                }
                else
                { 

                    //----------------------------------------------------------
                    // (4) A hyper, B sparse, M sparse: C hyper
                    //----------------------------------------------------------

                    Ch = Ah ; Ch_size = A->h_size ;
                }
            }

        }
        else
        {

            if (B_is_hyper)
            {
                if (M_is_hyper)
                {

                    //----------------------------------------------------------
                    // (5) A sparse, B hyper, M hyper: C hyper
                    //----------------------------------------------------------

                    // Ch = smaller of Mh, Bh

                    if (Bnvec <= Mnvec)
                    { 
                        Ch = Bh ; Ch_size = B->h_size ;
                    }
                    else
                    { 
                        Ch = Mh ; Ch_size = M->h_size ;
                    }

                }
                else
                { 

                    //----------------------------------------------------------
                    // (6) A sparse, B hyper, M sparse: C hyper
                    //----------------------------------------------------------

                    Ch = Bh ; Ch_size = B->h_size ;

                }
            }
            else
            {

                if (M_is_hyper)
                { 

                    //----------------------------------------------------------
                    // (7) A sparse, B sparse, M hyper: C hyper
                    //----------------------------------------------------------

                    Ch = Mh ; Ch_size = M->h_size ;

                }
                else
                { 

                    //----------------------------------------------------------
                    // (8) A sparse, B sparse, M sparse: C sparse
                    //----------------------------------------------------------

                    Ch = NULL ;
                }
            }
        }

    }
    else
    {

        //----------------------------------------------------------------------
        // 4 cases to consider:  A, B can be hyper or sparse
        //----------------------------------------------------------------------

        // Mask is not present, or present and complemented.

        if (A_is_hyper)
        {
            if (B_is_hyper)
            {

                //--------------------------------------------------------------
                // (1) A hyper, B hyper:  C hyper
                //--------------------------------------------------------------

                // Ch = smaller of Ah, Bh
                if (Anvec <= Bnvec)
                { 
                    Ch = Ah ; Ch_size = A->h_size ;
                }
                else
                { 
                    Ch = Bh ; Ch_size = B->h_size ;
                }
            }
            else
            { 

                //--------------------------------------------------------------
                // (2) A hyper, B sparse: C hyper
                //--------------------------------------------------------------

                Ch = Ah ; Ch_size = A->h_size ;

            }

        }
        else
        {

            if (B_is_hyper)
            { 

                //--------------------------------------------------------------
                // (3) A sparse, B hyper: C hyper
                //--------------------------------------------------------------

                Ch = Bh ; Ch_size = B->h_size ;

            }
            else
            { 

                //--------------------------------------------------------------
                // (4) A sparse, B sparse: C sparse
                //--------------------------------------------------------------

                Ch = NULL ;
            }
        }
    }

    //--------------------------------------------------------------------------
    // find Cnvec
    //--------------------------------------------------------------------------

    int64_t Cnvec ;

    if (Ch == NULL)
    { 
        // C is sparse
        (*C_sparsity) = GxB_SPARSE ;
        Cnvec = n ;
    }
    else
    {
        // C is hypersparse; one of A, B, or M are hypersparse
        ASSERT (A_is_hyper || B_is_hyper || M_is_hyper) ;
        (*C_sparsity) = GxB_HYPERSPARSE ;
        if (Ch == Ah)
        { 
            Cnvec = Anvec ;
        }
        else if (Ch == Bh)
        { 
            Cnvec = Bnvec ;
        }
        else // (Ch == Mh)
        { 
            Cnvec = Mnvec ;
        }
    }

    //--------------------------------------------------------------------------
    // determine the number of threads to use
    //--------------------------------------------------------------------------

    GB_GET_NTHREADS_MAX (nthreads_max, chunk, Context) ;
    int nthreads = GB_nthreads (Cnvec, chunk, nthreads_max) ;

    //--------------------------------------------------------------------------
    // construct C_to_M mapping
    //--------------------------------------------------------------------------

    if (M_is_hyper && Ch != Mh)
    {
        // allocate C_to_M
        ASSERT (Ch != NULL) ;
        C_to_M = GB_MALLOC_WORK (Cnvec, int64_t, &C_to_M_size) ;
        if (C_to_M == NULL)
        { 
            // out of memory
            GB_FREE_ALL ;
            return (GrB_OUT_OF_MEMORY) ;
        }

        // create the M->Y hyper_hash
        GB_OK (GB_hyper_hash_build (M, Context)) ;

        const int64_t *restrict Mp = M->p ;
        const int64_t *restrict M_Yp = M->Y->p ;
        const int64_t *restrict M_Yi = M->Y->i ;
        const int64_t *restrict M_Yx = M->Y->x ;
        const int64_t M_hash_bits = M->Y->vdim - 1 ;

        // compute C_to_M
        int64_t k ;
        #pragma omp parallel for num_threads(nthreads) schedule(static)
        for (k = 0 ; k < Cnvec ; k++)
        { 
            int64_t pM, pM_end ;
            int64_t j = Ch [k] ;
            int64_t kM = GB_hyper_hash_lookup (Mp, M_Yp, M_Yi, M_Yx,
                M_hash_bits, j, &pM, &pM_end) ;
            C_to_M [k] = (pM < pM_end) ? kM : -1 ;
        }
    }

    //--------------------------------------------------------------------------
    // construct C_to_A mapping
    //--------------------------------------------------------------------------

    if (A_is_hyper && Ch != Ah)
    {
        // allocate C_to_A
        ASSERT (Ch != NULL) ;
        C_to_A = GB_MALLOC_WORK (Cnvec, int64_t, &C_to_A_size) ;
        if (C_to_A == NULL)
        { 
            // out of memory
            GB_FREE_ALL ;
            return (GrB_OUT_OF_MEMORY) ;
        }

        // create the A->Y hyper_hash
        GB_OK (GB_hyper_hash_build (A, Context)) ;

        const int64_t *restrict Ap = A->p ;
        const int64_t *restrict A_Yp = A->Y->p ;
        const int64_t *restrict A_Yi = A->Y->i ;
        const int64_t *restrict A_Yx = A->Y->x ;
        const int64_t A_hash_bits = A->Y->vdim - 1 ;

        // compute C_to_A
        int64_t k ;
        #pragma omp parallel for num_threads(nthreads) schedule(static)
        for (k = 0 ; k < Cnvec ; k++)
        { 
            int64_t pA, pA_end ;
            int64_t j = Ch [k] ;
            int64_t kA = GB_hyper_hash_lookup (Ap, A_Yp, A_Yi, A_Yx,
                A_hash_bits, j, &pA, &pA_end) ;
            C_to_A [k] = (pA < pA_end) ? kA : -1 ;
        }
    }

    //--------------------------------------------------------------------------
    // construct C_to_B mapping
    //--------------------------------------------------------------------------

    if (B_is_hyper && Ch != Bh)
    {
        // allocate C_to_B
        ASSERT (Ch != NULL) ;
        C_to_B = GB_MALLOC_WORK (Cnvec, int64_t, &C_to_B_size) ;
        if (C_to_B == NULL)
        { 
            // out of memory
            GB_FREE_ALL ;
            return (GrB_OUT_OF_MEMORY) ;
        }

        // create the B->Y hyper_hash
        GB_OK (GB_hyper_hash_build (B, Context)) ;

        const int64_t *restrict Bp = B->p ;
        const int64_t *restrict B_Yp = B->Y->p ;
        const int64_t *restrict B_Yi = B->Y->i ;
        const int64_t *restrict B_Yx = B->Y->x ;
        const int64_t B_hash_bits = B->Y->vdim - 1 ;

        // compute C_to_B
        int64_t k ;
        #pragma omp parallel for num_threads(nthreads) schedule(static)
        for (k = 0 ; k < Cnvec ; k++)
        { 
            int64_t pB, pB_end ;
            int64_t j = Ch [k] ;
            int64_t kB = GB_hyper_hash_lookup (Bp, B_Yp, B_Yi, B_Yx,
                B_hash_bits, j, &pB, &pB_end) ;
            C_to_B [k] = (pB < pB_end) ? kB : -1 ;
        }
    }

    //--------------------------------------------------------------------------
    // return result
    //--------------------------------------------------------------------------

    (*p_Cnvec) = Cnvec ;
    (*Ch_handle) = Ch ;
    (*Ch_size_handle) = Ch_size ;
    if (C_to_M_handle != NULL)
    {
        (*C_to_M_handle) = C_to_M ;
        (*C_to_M_size_handle) = C_to_M_size ;
    }
    (*C_to_A_handle) = C_to_A ; (*C_to_A_size_handle) = C_to_A_size ;
    (*C_to_B_handle) = C_to_B ; (*C_to_B_size_handle) = C_to_B_size ;

    //--------------------------------------------------------------------------
    // The code below describes what the output contains:
    //--------------------------------------------------------------------------

    #ifdef GB_DEBUG
    ASSERT (A != NULL) ;        // A and B are always present
    ASSERT (B != NULL) ;
    int64_t jlast = -1 ;
    for (int64_t k = 0 ; k < Cnvec ; k++)
    {

        // C(:,j) is in the list, as the kth vector
        int64_t j ;
        if (Ch == NULL)
        {
            // C will be constructed as sparse
            j = k ;
        }
        else
        {
            // C will be constructed as hypersparse
            j = Ch [k] ;
        }

        // vectors j in Ch are sorted, and in the range 0:n-1
        ASSERT (j >= 0 && j < n) ;
        ASSERT (j > jlast) ;
        jlast = j ;

        // see if A (:,j) exists
        if (C_to_A != NULL)
        {
            // A is hypersparse
            ASSERT (A_is_hyper)
            int64_t kA = C_to_A [k] ;
            ASSERT (kA >= -1 && kA < A->nvec) ;
            if (kA >= 0)
            {
                int64_t jA = A->h [kA] ;
                ASSERT (j == jA) ;
            }
        }
        else if (A_is_hyper)
        {
            // A is hypersparse, and Ch is a shallow copy of A->h
            ASSERT (Ch == A->h) ;
        }

        // see if B (:,j) exists
        if (C_to_B != NULL)
        {
            // B is hypersparse
            ASSERT (B_is_hyper)
            int64_t kB = C_to_B [k] ;
            ASSERT (kB >= -1 && kB < B->nvec) ;
            if (kB >= 0)
            {
                int64_t jB = B->h [kB] ;
                ASSERT (j == jB) ;
            }
        }
        else if (B_is_hyper)
        {
            // A is hypersparse, and Ch is a shallow copy of A->h
            ASSERT (Ch == B->h) ;
        }

        // see if M (:,j) exists
        if (Ch != NULL && M != NULL && Ch == M->h)
        {
            // Ch is the same as Mh
            ASSERT (M != NULL) ;
            ASSERT (M->h != NULL) ;
            ASSERT (Ch != NULL && M->h != NULL && Ch [k] == M->h [k]) ;
            ASSERT (C_to_M == NULL) ;
        }
        else if (C_to_M != NULL)
        {
            // M is present and hypersparse
            ASSERT (M != NULL) ;
            ASSERT (M->h != NULL) ;
            int64_t kM = C_to_M [k] ;
            ASSERT (kM >= -1 && kM < M->nvec) ;
            if (kM >= 0)
            {
                int64_t jM = M->h [kM] ;
                ASSERT (j == jM) ;
            }
        }
        else
        {
            // M is not present, or in sparse form
            ASSERT (M == NULL || M->h == NULL) ;
        }
    }

    #endif

    return (GrB_SUCCESS) ;
}