1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
|
//------------------------------------------------------------------------------
// GB_emult_phase2: C=A.*B, C<M>=A.*B, or C<!M>=A.*B
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// GB_emult_phase2 computes C=A.*B, C<M>=A.*B, or C<!M>=A.*B. It is
// preceded first by GB_emult_phase0, which computes the list of vectors of
// C to compute (Ch) and their location in M, A, and B (C_to_[MAB]). Next,
// GB_emult_phase1 counts the entries in each vector C(:,j) and computes Cp.
// GB_emult_phase2 computes the pattern and values of each vector of C(:,j),
// entirely in parallel.
// C, M, A, and B can be have any sparsity structure. If M is sparse or
// hypersparse, and complemented, however, then it is not applied and not
// passed to this function. It is applied later, as determined by
// GB_emult_sparsity.
// This function either frees Cp or transplants it into C, as C->p. Either
// way, the caller must not free it.
#include "GB_ewise.h"
#include "GB_emult.h"
#include "GB_binop.h"
#include "GB_unused.h"
#include "GB_stringify.h"
#ifndef GBCUDA_DEV
#include "GB_binop__include.h"
#endif
#define GB_FREE_ALL \
{ \
GB_phybix_free (C) ; \
}
GrB_Info GB_emult_phase2 // C=A.*B or C<M>=A.*B
(
GrB_Matrix C, // output matrix, static header
const GrB_Type ctype, // type of output matrix C
const bool C_is_csc, // format of output matrix C
const GrB_BinaryOp op, // op to perform C = op (A,B)
// from phase1:
int64_t **Cp_handle, // vector pointers for C
size_t Cp_size,
const int64_t Cnvec_nonempty, // # of non-empty vectors in C
// tasks from phase1a:
const GB_task_struct *restrict TaskList, // array of structs
const int C_ntasks, // # of tasks
const int C_nthreads, // # of threads to use
// analysis from phase0:
const int64_t Cnvec,
const int64_t *restrict Ch,
size_t Ch_size,
const int64_t *restrict C_to_M,
const int64_t *restrict C_to_A,
const int64_t *restrict C_to_B,
const int C_sparsity,
// from GB_emult_sparsity:
const int ewise_method,
// original input:
const GrB_Matrix M, // optional mask, may be NULL
const bool Mask_struct, // if true, use the only structure of M
const bool Mask_comp, // if true, use !M
const GrB_Matrix A,
const GrB_Matrix B,
GB_Context Context
)
{
//--------------------------------------------------------------------------
// check inputs
//--------------------------------------------------------------------------
ASSERT (C != NULL && (C->static_header || GBNSTATIC)) ;
ASSERT_BINARYOP_OK (op, "op for emult phase2", GB0) ;
ASSERT_MATRIX_OK (A, "A for emult phase2", GB0) ;
ASSERT (!GB_ZOMBIES (A)) ;
ASSERT (!GB_JUMBLED (A)) ;
ASSERT (!GB_PENDING (A)) ;
ASSERT_MATRIX_OK (B, "B for emult phase2", GB0) ;
ASSERT (!GB_ZOMBIES (B)) ;
ASSERT (!GB_JUMBLED (B)) ;
ASSERT (!GB_PENDING (B)) ;
ASSERT_MATRIX_OK_OR_NULL (M, "M for emult phase2", GB0) ;
ASSERT (!GB_ZOMBIES (M)) ;
ASSERT (!GB_JUMBLED (M)) ;
ASSERT (!GB_PENDING (M)) ;
ASSERT (A->vdim == B->vdim) ;
ASSERT (Cp_handle != NULL) ;
int64_t *restrict Cp = (*Cp_handle) ;
//--------------------------------------------------------------------------
// get the opcode
//--------------------------------------------------------------------------
bool C_is_hyper = (C_sparsity == GxB_HYPERSPARSE) ;
bool C_is_sparse_or_hyper = (C_sparsity == GxB_SPARSE) || C_is_hyper ;
ASSERT (C_is_sparse_or_hyper == (Cp != NULL)) ;
ASSERT (C_is_hyper == (Ch != NULL)) ;
GB_Opcode opcode = op->opcode ;
bool op_is_positional = GB_OPCODE_IS_POSITIONAL (opcode) ;
bool op_is_first = (opcode == GB_FIRST_binop_code) ;
bool op_is_second = (opcode == GB_SECOND_binop_code) ;
bool op_is_pair = (opcode == GB_PAIR_binop_code) ;
ASSERT (GB_Type_compatible (ctype, op->ztype)) ;
ASSERT (GB_IMPLIES (!(op_is_second || op_is_pair || op_is_positional),
GB_Type_compatible (A->type, op->xtype))) ;
ASSERT (GB_IMPLIES (!(op_is_first || op_is_pair || op_is_positional),
GB_Type_compatible (B->type, op->ytype))) ;
//--------------------------------------------------------------------------
// check if C is iso and compute its iso value if it is
//--------------------------------------------------------------------------
const size_t csize = ctype->size ;
GB_void cscalar [GB_VLA(csize)] ;
bool C_iso = GB_iso_emult (cscalar, ctype, A, B, op) ;
#ifdef GB_DEBUGIFY_DEFN
GB_debugify_ewise (C_iso, C_sparsity, ctype, M,
Mask_struct, Mask_comp, op, false, A, B) ;
#endif
//--------------------------------------------------------------------------
// allocate the output matrix C
//--------------------------------------------------------------------------
int64_t cnz = (C_is_sparse_or_hyper) ? Cp [Cnvec] : GB_nnz_full (A) ;
// allocate the result C (but do not allocate C->p or C->h)
// set C->iso = C_iso OK
GrB_Info info = GB_new_bix (&C, // any sparsity, existing header
ctype, A->vlen, A->vdim, GB_Ap_null, C_is_csc,
C_sparsity, true, A->hyper_switch, Cnvec, cnz, true, C_iso, Context) ;
if (info != GrB_SUCCESS)
{
// out of memory; caller must free C_to_M, C_to_A, C_to_B
// Ch must not be freed since Ch is always shallow
GB_FREE (Cp_handle, Cp_size) ;
return (info) ;
}
// transplant Cp into C as the vector pointers, from GB_emult_phase1
if (C_is_sparse_or_hyper)
{
C->nvec_nonempty = Cnvec_nonempty ;
C->p = (int64_t *) Cp ; C->p_size = Cp_size ;
C->nvals = cnz ;
(*Cp_handle) = NULL ;
}
// add Ch as the hypersparse list for C, from GB_emult_phase0
if (C_is_hyper)
{
// C->h is currently shallow; a copy is made at the end
C->h = (int64_t *) Ch ; C->h_size = Ch_size ;
C->h_shallow = true ;
C->nvec = Cnvec ;
}
// Cp has been transplanted into C; so it is not freed here
ASSERT ((*Cp_handle) == NULL) ;
C->magic = GB_MAGIC ;
GB_Type_code ccode = ctype->code ;
//--------------------------------------------------------------------------
// check if the values of A and/or B are ignored
//--------------------------------------------------------------------------
// With C = ewisemult (A,B), only the intersection of A and B is used.
// If op is SECOND or PAIR, the values of A are never accessed.
// If op is FIRST or PAIR, the values of B are never accessed.
// If op is PAIR, the values of A and B are never accessed.
// Contrast with ewiseadd.
// A is passed as x, and B as y, in z = op(x,y)
bool A_is_pattern = op_is_second || op_is_pair || op_is_positional ;
bool B_is_pattern = op_is_first || op_is_pair || op_is_positional ;
//--------------------------------------------------------------------------
// using a built-in binary operator (except for positional operators)
//--------------------------------------------------------------------------
#define GB_PHASE_2_OF_2
bool done = false ;
if (C_iso)
{
//----------------------------------------------------------------------
// C is iso
//----------------------------------------------------------------------
// Cx [0] = cscalar = op (A,B)
GB_BURBLE_MATRIX (C, "(iso emult) ") ;
memcpy (C->x, cscalar, csize) ;
// pattern of C = set intersection of pattern of A and B
#define GB_ISO_EMULT
#include "GB_emult_meta.c"
done = true ;
}
else
{
#ifndef GBCUDA_DEV
//------------------------------------------------------------------
// define the worker for the switch factory
//------------------------------------------------------------------
#define GB_AemultB(mult,xname) GB (_AemultB_ ## mult ## xname)
#define GB_BINOP_WORKER(mult,xname) \
{ \
info = GB_AemultB(mult,xname) (C, C_sparsity, \
ewise_method, M, Mask_struct, Mask_comp, \
A, B, C_to_M, C_to_A, C_to_B, \
TaskList, C_ntasks, C_nthreads, Context) ; \
done = (info != GrB_NO_VALUE) ; \
} \
break ;
//------------------------------------------------------------------
// launch the switch factory
//------------------------------------------------------------------
GB_Type_code xcode, ycode, zcode ;
if (!op_is_positional &&
GB_binop_builtin (A->type, A_is_pattern, B->type, B_is_pattern,
op, false, &opcode, &xcode, &ycode, &zcode) && ccode == zcode)
{
#define GB_NO_PAIR
#include "GB_binop_factory.c"
}
#endif
}
//--------------------------------------------------------------------------
// generic worker
//--------------------------------------------------------------------------
if (!done)
{
GB_BURBLE_MATRIX (C, "(generic emult: %s) ", op->name) ;
GB_ewise_generic (C, op, TaskList, C_ntasks, C_nthreads,
C_to_M, C_to_A, C_to_B, C_sparsity, ewise_method, NULL,
NULL, 0, 0, NULL, 0, 0, NULL, 0, 0,
M, Mask_struct, Mask_comp, A, B, Context) ;
}
//--------------------------------------------------------------------------
// construct the final C->h
//--------------------------------------------------------------------------
GB_OK (GB_hypermatrix_prune (C, Context)) ;
//--------------------------------------------------------------------------
// return result
//--------------------------------------------------------------------------
ASSERT_MATRIX_OK (C, "C output for emult phase2", GB0) ;
return (GrB_SUCCESS) ;
}
|