1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
|
//------------------------------------------------------------------------------
// GB_ewise: C<M> = accum (C, A+B) or A.*B
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// C<M> = accum (C,A+B), A.*B and variations. The input matrices A and B are
// optionally transposed. Does the work for GrB_eWiseAdd_* and
// GrB_eWiseMult_*. Handles all cases of the mask.
#define GB_FREE_ALL \
{ \
GB_Matrix_free (&T) ; \
GB_Matrix_free (&AT) ; \
GB_Matrix_free (&BT) ; \
GB_Matrix_free (&MT) ; \
}
#include "GB_ewise.h"
#include "GB_add.h"
#include "GB_emult.h"
#include "GB_transpose.h"
#include "GB_accum_mask.h"
#include "GB_dense.h"
#include "GB_binop.h"
GrB_Info GB_ewise // C<M> = accum (C, A+B) or A.*B
(
GrB_Matrix C, // input/output matrix for results
const bool C_replace, // if true, clear C before writing to it
const GrB_Matrix M, // optional mask for C, unused if NULL
const bool Mask_comp, // if true, complement the mask M
const bool Mask_struct, // if true, use the only structure of M
const GrB_BinaryOp accum, // optional accum for Z=accum(C,T)
const GrB_BinaryOp op_in, // defines '+' for C=A+B, or .* for A.*B
const GrB_Matrix A, // input matrix
bool A_transpose, // if true, use A' instead of A
const GrB_Matrix B, // input matrix
bool B_transpose, // if true, use B' instead of B
bool eWiseAdd, // if true, do set union (like A+B),
// otherwise do intersection (like A.*B)
const bool is_eWiseUnion, // if true, eWiseUnion, else eWiseAdd
const GrB_Scalar alpha, // alpha and beta ignored for eWiseAdd,
const GrB_Scalar beta, // nonempty scalars for GxB_eWiseUnion
GB_Context Context
)
{
//--------------------------------------------------------------------------
// check inputs
//--------------------------------------------------------------------------
// C may be aliased with M, A, and/or B
GrB_Info info ;
GrB_Matrix MT = NULL, T = NULL, AT = NULL, BT = NULL ;
struct GB_Matrix_opaque T_header, MT_header, AT_header, BT_header ;
GB_RETURN_IF_FAULTY_OR_POSITIONAL (accum) ;
ASSERT_MATRIX_OK (C, "C input for GB_ewise", GB0) ;
ASSERT_MATRIX_OK_OR_NULL (M, "M for GB_ewise", GB0) ;
ASSERT_BINARYOP_OK_OR_NULL (accum, "accum for GB_ewise", GB0) ;
ASSERT_BINARYOP_OK (op_in, "op for GB_ewise", GB0) ;
ASSERT_MATRIX_OK (A, "A for GB_ewise", GB0) ;
ASSERT_MATRIX_OK (B, "B for GB_ewise", GB0) ;
// T has the same type as the output z for z=op(a,b)
GrB_BinaryOp op = op_in ;
GrB_Type T_type = op->ztype ;
// check domains and dimensions for C<M> = accum (C,T)
GB_OK (GB_compatible (C->type, C, M, Mask_struct, accum, T_type, Context)) ;
// T=op(A,B) via op operator, so A and B must be compatible with z=op(a,b)
GB_OK (GB_BinaryOp_compatible (op, NULL, A->type, B->type,
GB_ignore_code, Context)) ;
if (eWiseAdd)
{
if (is_eWiseUnion)
{
// alpha and beta scalars must be present
GB_RETURN_IF_NULL_OR_FAULTY (alpha) ;
GB_RETURN_IF_NULL_OR_FAULTY (beta) ;
GB_MATRIX_WAIT (alpha) ;
GB_MATRIX_WAIT (beta) ;
if (GB_nnz ((GrB_Matrix) alpha) == 0)
{
GB_ERROR (GrB_EMPTY_OBJECT, "%s\n",
"alpha cannot be an empty scalar") ;
}
if (GB_nnz ((GrB_Matrix) beta) == 0)
{
GB_ERROR (GrB_EMPTY_OBJECT, "%s\n",
"beta cannot be an empty scalar") ;
}
// C = op (A, beta) is done for entries in A but not B
if (!GB_Type_compatible (op->ytype, beta->type))
{
GB_ERROR (GrB_DOMAIN_MISMATCH,
"beta scalar of type [%s]\n"
"cannot be typecast to op input of type [%s]",
beta->type->name, op->ytype->name) ;
}
// C = op (alpha, B) is done for entries in B but not A
if (!GB_Type_compatible (op->xtype, alpha->type))
{
GB_ERROR (GrB_DOMAIN_MISMATCH,
"alpha scalar of type [%s]\n"
"cannot be typecast to op input of type [%s]",
alpha->type->name, op->xtype->name) ;
}
}
else
{
// C = A is done for entries in A but not B
if (!GB_Type_compatible (C->type, A->type))
{
GB_ERROR (GrB_DOMAIN_MISMATCH,
"First input of type [%s]\n"
"cannot be typecast to final output of type [%s]",
A->type->name, C->type->name) ;
}
// C = B is done for entries in B but not A
if (!GB_Type_compatible (C->type, B->type))
{
GB_ERROR (GrB_DOMAIN_MISMATCH,
"Second input of type [%s]\n"
"cannot be typecast to final output of type [%s]",
B->type->name, C->type->name) ;
}
}
}
// check the dimensions
int64_t anrows = (A_transpose) ? GB_NCOLS (A) : GB_NROWS (A) ;
int64_t ancols = (A_transpose) ? GB_NROWS (A) : GB_NCOLS (A) ;
int64_t bnrows = (B_transpose) ? GB_NCOLS (B) : GB_NROWS (B) ;
int64_t bncols = (B_transpose) ? GB_NROWS (B) : GB_NCOLS (B) ;
int64_t cnrows = GB_NROWS (C) ;
int64_t cncols = GB_NCOLS (C) ;
if (anrows != bnrows || ancols != bncols ||
cnrows != anrows || cncols != bncols)
{
GB_ERROR (GrB_DIMENSION_MISMATCH,
"Dimensions not compatible:\n"
"output is " GBd "-by-" GBd "\n"
"first input is " GBd "-by-" GBd "%s\n"
"second input is " GBd "-by-" GBd "%s",
cnrows, cncols,
anrows, ancols, A_transpose ? " (transposed)" : "",
bnrows, bncols, B_transpose ? " (transposed)" : "") ;
}
// quick return if an empty mask M is complemented
GB_RETURN_IF_QUICK_MASK (C, C_replace, M, Mask_comp, Mask_struct) ;
//--------------------------------------------------------------------------
// handle CSR and CSC formats
//--------------------------------------------------------------------------
GB_Opcode opcode = op->opcode ;
bool op_is_positional = GB_OPCODE_IS_POSITIONAL (opcode) ;
// CSC/CSR format of T is same as C. Conform A and B to the format of C.
bool T_is_csc = C->is_csc ;
if (T_is_csc != A->is_csc)
{
// Flip the sense of A_transpose. For example, if C is CSC and A is
// CSR, and A_transpose is true, then C=A'+B is being computed. But
// this is the same as C=A+B where A is treated as if it is CSC.
A_transpose = !A_transpose ;
}
if (T_is_csc != B->is_csc)
{
// Flip the sense of B_transpose.
B_transpose = !B_transpose ;
}
if (A_transpose && B_transpose)
{
// T=A'+B' is not computed. Instead, T=A+B is computed first,
// and then C = T' is computed.
A_transpose = false ;
B_transpose = false ;
// The CSC format of T and C now differ.
T_is_csc = !T_is_csc ;
}
if (!T_is_csc)
{
if (op_is_positional)
{
// positional ops must be flipped, with i and j swapped
op = GB_positional_binop_ijflip (op) ;
opcode = op->opcode ;
}
}
//--------------------------------------------------------------------------
// decide when to apply the mask
//--------------------------------------------------------------------------
// GB_add and GB_emult can apply any non-complemented mask, but it is
// faster to exploit the mask in GB_add / GB_emult only when it is very
// sparse compared with A and B, or (in special cases) when it is easy
// to apply.
// check the CSR/CSC format of M
bool M_is_csc = (M == NULL) ? T_is_csc : M->is_csc ;
//--------------------------------------------------------------------------
// transpose M if needed
//--------------------------------------------------------------------------
GrB_Matrix M1 = M ;
bool M_transpose = (T_is_csc != M_is_csc) ;
if (M_transpose)
{
// MT = (bool) M'
GBURBLE ("(M transpose) ") ;
GB_CLEAR_STATIC_HEADER (MT, &MT_header) ;
GB_OK (GB_transpose_cast (MT, GrB_BOOL, T_is_csc, M, Mask_struct,
Context)) ;
M1 = MT ;
}
//--------------------------------------------------------------------------
// transpose A and/or B if needed:
//--------------------------------------------------------------------------
bool A_is_pattern = false, B_is_pattern = false ;
if (!eWiseAdd)
{
// eWiseMult can create AT and BT as iso if the op is FIRST, SECOND, or
// PAIR; eWiseAdd cannot.
GB_binop_pattern (&A_is_pattern, &B_is_pattern, false, opcode) ;
}
GrB_Matrix A1 = A ;
if (A_transpose)
{
// AT = (xtype) A' or AT = (xtype) one (A')
GBURBLE ("(A transpose) ") ;
GB_CLEAR_STATIC_HEADER (AT, &AT_header) ;
GB_OK (GB_transpose_cast (AT, op->xtype, T_is_csc, A, A_is_pattern,
Context)) ;
A1 = AT ;
ASSERT_MATRIX_OK (AT, "AT from transpose", GB0) ;
}
GrB_Matrix B1 = B ;
if (B_transpose)
{
// BT = (ytype) B' or BT = (ytype) one (B')
GBURBLE ("(B transpose) ") ;
GB_CLEAR_STATIC_HEADER (BT, &BT_header) ;
GB_OK (GB_transpose_cast (BT, op->ytype, T_is_csc, B, B_is_pattern,
Context)) ;
B1 = BT ;
ASSERT_MATRIX_OK (BT, "BT from transpose", GB0) ;
}
//--------------------------------------------------------------------------
// special cases
//--------------------------------------------------------------------------
// FUTURE::: handle more special cases:
// C<M>+=A+B when C and A are dense, B is sparse. M can be sparse.
// C<M>+=A+B when C and B are dense, A is sparse. M can be sparse.
// C<M>+=A+B when C, A, and B are dense. M can be sparse.
// In all cases above, C remains dense and can be updated in-place
// C_replace must be false. M can be valued or structural.
#ifndef GBCUDA_DEV
bool C_as_if_full = GB_as_if_full (C) ;
bool A_as_if_full = GB_as_if_full (A1) ;
bool B_as_if_full = GB_as_if_full (B1) ;
bool no_typecast =
(op->ztype == C->type) // no typecasting of C
&& (op->xtype == A1->type) // no typecasting of A
&& (op->ytype == B1->type) ; // no typecasting of B
bool any_bitmap =
GB_IS_BITMAP (C) ||
GB_IS_BITMAP (M) ||
GB_IS_BITMAP (A) ||
GB_IS_BITMAP (B) ;
bool any_pending_work =
GB_ANY_PENDING_WORK (M1) ||
GB_ANY_PENDING_WORK (A1) ||
GB_ANY_PENDING_WORK (B1) ;
bool any_iso = (A1->iso || B1->iso) ;
// FUTURE: for sssp12:
// C<A> = A+B where C is sparse and B is dense;
// mask is structural, not complemented, C_replace is false.
// C is not empty. Use a kernel that computes T<A>=A+B
// where T starts out empty; just iterate over the entries in A.
if (A_as_if_full // A and B are as-if-full
&& B_as_if_full
&& !any_iso // A and B are not iso
&& (M == NULL) && !Mask_comp // no mask
&& (C->is_csc == T_is_csc) // no transpose of C
&& no_typecast // no typecasting
&& (opcode != GB_USER_binop_code) // not a user-defined operator
&& !op_is_positional // op is not positional
&& !any_bitmap // no bitmap matrices
&& !any_pending_work) // no matrix has pending work
{
if (C_as_if_full // C is as-if-full
&& !C->iso // C is not iso
&& accum == op // accum is same as the op
&& (opcode >= GB_MIN_binop_code) // subset of binary operators
&& (opcode <= GB_RDIV_binop_code))
{
//------------------------------------------------------------------
// C += A+B where all 3 matrices are dense
//------------------------------------------------------------------
// C_replace is ignored
GBURBLE ("dense C+=A+B ") ;
GB_dense_ewise3_accum (C, A1, B1, op, Context) ; // cannot fail
GB_FREE_ALL ;
ASSERT_MATRIX_OK (C, "C output for GB_ewise, dense C+=A+B", GB0) ;
return (GrB_SUCCESS) ;
}
else if (accum == NULL) // no accum
{
//------------------------------------------------------------------
// C = A+B where A and B are dense (C is anything)
//------------------------------------------------------------------
// C_replace is ignored
GBURBLE ("dense C=A+B ") ;
info = GB_dense_ewise3_noaccum (C, C_as_if_full, A1, B1, op,
Context) ;
GB_FREE_ALL ;
if (info == GrB_SUCCESS)
{
ASSERT_MATRIX_OK (C, "C output for GB_ewise, dense C=A+B", GB0);
}
return (info) ;
}
}
#endif
//--------------------------------------------------------------------------
// T = A+B or A.*B, or with any mask M
//--------------------------------------------------------------------------
bool mask_applied = false ;
GB_CLEAR_STATIC_HEADER (T, &T_header) ;
if (eWiseAdd)
{
//----------------------------------------------------------------------
// T<any mask> = A+B
//----------------------------------------------------------------------
// TODO: check the mask condition in GB_add_sparsity.
// Only exploit the mask in GB_add if it's more efficient than
// exploiting it later, probably this condition:
// (accum == NULL) && (C->is_csc == T->is_csc)
// && (C_replace || GB_NNZ_UPPER_BOUND (C) == 0))
// If that is true and the mask is applied, then T is transplanted as
// the final C and the mask is no longer needed. In this case, it
// could be faster to exploit the mask duing GB_add.
GB_OK (GB_add (T, T_type, T_is_csc, M1, Mask_struct, Mask_comp,
&mask_applied, A1, B1, is_eWiseUnion, alpha, beta, op, Context)) ;
}
else
{
//----------------------------------------------------------------------
// T<any mask> = A.*B
//----------------------------------------------------------------------
// T can be returned with shallow components derived from its inputs A1
// and/or B1. In particular, if T is hypersparse, T->h may be a
// shallow copy of A1->h, B1->h, or M1->h. T is hypersparse if any
// matrix A1, B1, or M1 are hypersparse. Internally, T->h always
// starts as a shallow copy of A1->h, B1->h, or M1->h, but it may be
// pruned by GB_hypermatrix_prune, and thus no longer shallow.
GB_OK (GB_emult (T, T_type, T_is_csc, M1, Mask_struct, Mask_comp,
&mask_applied, A1, B1, op, Context)) ;
//----------------------------------------------------------------------
// transplant shallow content from AT, BT, or MT
//----------------------------------------------------------------------
// If T is hypersparse, T->h is always a shallow copy of A1->h, B1->h,
// or M1->h. Any of the three matrices A1, B1, or M1 may be temporary
// transposes, AT, BT, and MT respectively. If T->h is a shallow cpoy
// of a temporary matrix, then change the ownership of the T->h array,
// from the temporary matrix into T, so that T->h is not freed when AT,
// BT, and MT are freed.
// GB_transpose can return all kinds of shallow components, particularly
// when transposing vectors. It can return AT->h as shallow copy of
// A->i, for example.
if (T->h_shallow)
{
// T->h is shallow and T is hypersparse
ASSERT (GB_IS_HYPERSPARSE (T)) ;
// one of A1, B1, or M1 is hypersparse
ASSERT (GB_IS_HYPERSPARSE (A1) || GB_IS_HYPERSPARSE (B1) ||
GB_IS_HYPERSPARSE (M1))
if (A_transpose && T->h == A1->h)
{
// A1 is the temporary matrix AT. AT->h might itself be a
// shallow copy of A->h or A->i, from GB_transpose.
ASSERT (A1 == AT) ;
T->h_shallow = AT->h_shallow ;
T->h_size = AT->h_size ;
AT->h_shallow = true ;
}
else if (B_transpose && T->h == B1->h)
{
// B1 is the temporary matrix BT. BT->h might itself be a
// shallow copy of B->h or B->i, from GB_transpose.
ASSERT (B1 == BT) ;
T->h_shallow = BT->h_shallow ;
T->h_size = BT->h_size ;
BT->h_shallow = true ;
}
else if (M_transpose && T->h == M1->h)
{
// M1 is the temporary matrix MT. MT->h might itself be a
// shallow copy of M->h or M->i, from GB_transpose.
ASSERT (M1 == MT) ;
T->h_shallow = MT->h_shallow ;
T->h_size = MT->h_size ;
MT->h_shallow = true ;
}
// T->h may still be shallow, but if so, it is a shallow copy of
// some component of the user input matrices A, B, or M, and must
// remain shallow. A deep copy of it will be made when T->h is
// transplanted into the result C.
ASSERT (GB_IMPLIES (T->h_shallow,
(T->h == A1->h || T->h == B1->h ||
(M1 != NULL && T->h == M1->h)))) ;
}
}
//--------------------------------------------------------------------------
// free the transposed matrices
//--------------------------------------------------------------------------
GB_Matrix_free (&AT) ;
GB_Matrix_free (&BT) ;
//--------------------------------------------------------------------------
// C<M> = accum (C,T): accumulate the results into C via the mask
//--------------------------------------------------------------------------
ASSERT_MATRIX_OK (T, "T from GB_ewise, prior to C<M>=accum(C,T)", GB0) ;
if ((accum == NULL) && (C->is_csc == T->is_csc)
&& (M == NULL || (M != NULL && mask_applied))
&& (C_replace || GB_NNZ_UPPER_BOUND (C) == 0))
{
// C = 0 ; C = (ctype) T ; with the same CSR/CSC format. The mask M
// (if any) has already been applied. If C is also empty, or to be
// cleared anyway, and if accum is not present, then T can be
// transplanted directly into C, as C = (ctype) T, typecasting if
// needed. If no typecasting is done then this takes no time at all
// and is a pure transplant. Also conform C to its desired
// hypersparsity.
GB_Matrix_free (&MT) ;
GB_OK (GB_transplant_conform (C, C->type, &T, Context)) ;
return (GB_block (C, Context)) ;
}
else
{
// C<M> = accum (C,T)
// GB_accum_mask also conforms C to its desired hypersparsity
info = GB_accum_mask (C, M, MT, accum, &T, C_replace, Mask_comp,
Mask_struct, Context) ;
GB_Matrix_free (&MT) ;
return (info) ;
}
}
|