File: GB_ewise.c

package info (click to toggle)
suitesparse-graphblas 7.4.0%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 67,112 kB
  • sloc: ansic: 1,072,243; cpp: 8,081; sh: 512; makefile: 506; asm: 369; python: 125; awk: 10
file content (508 lines) | stat: -rw-r--r-- 20,328 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
//------------------------------------------------------------------------------
// GB_ewise: C<M> = accum (C, A+B) or A.*B
//------------------------------------------------------------------------------

// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

//------------------------------------------------------------------------------

// C<M> = accum (C,A+B), A.*B and variations.  The input matrices A and B are
// optionally transposed.  Does the work for GrB_eWiseAdd_* and
// GrB_eWiseMult_*.  Handles all cases of the mask.

#define GB_FREE_ALL         \
{                           \
    GB_Matrix_free (&T) ;   \
    GB_Matrix_free (&AT) ;  \
    GB_Matrix_free (&BT) ;  \
    GB_Matrix_free (&MT) ;  \
}

#include "GB_ewise.h"
#include "GB_add.h"
#include "GB_emult.h"
#include "GB_transpose.h"
#include "GB_accum_mask.h"
#include "GB_dense.h"
#include "GB_binop.h"

GrB_Info GB_ewise                   // C<M> = accum (C, A+B) or A.*B
(
    GrB_Matrix C,                   // input/output matrix for results
    const bool C_replace,           // if true, clear C before writing to it
    const GrB_Matrix M,             // optional mask for C, unused if NULL
    const bool Mask_comp,           // if true, complement the mask M
    const bool Mask_struct,         // if true, use the only structure of M
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const GrB_BinaryOp op_in,       // defines '+' for C=A+B, or .* for A.*B
    const GrB_Matrix A,             // input matrix
    bool A_transpose,               // if true, use A' instead of A
    const GrB_Matrix B,             // input matrix
    bool B_transpose,               // if true, use B' instead of B
    bool eWiseAdd,                  // if true, do set union (like A+B),
                                    // otherwise do intersection (like A.*B)
    const bool is_eWiseUnion,       // if true, eWiseUnion, else eWiseAdd
    const GrB_Scalar alpha,         // alpha and beta ignored for eWiseAdd,
    const GrB_Scalar beta,          // nonempty scalars for GxB_eWiseUnion
    GB_Context Context
)
{

    //--------------------------------------------------------------------------
    // check inputs
    //--------------------------------------------------------------------------

    // C may be aliased with M, A, and/or B

    GrB_Info info ;
    GrB_Matrix MT = NULL, T = NULL, AT = NULL, BT = NULL ;
    struct GB_Matrix_opaque T_header, MT_header, AT_header, BT_header ;

    GB_RETURN_IF_FAULTY_OR_POSITIONAL (accum) ;

    ASSERT_MATRIX_OK (C, "C input for GB_ewise", GB0) ;
    ASSERT_MATRIX_OK_OR_NULL (M, "M for GB_ewise", GB0) ;
    ASSERT_BINARYOP_OK_OR_NULL (accum, "accum for GB_ewise", GB0) ;
    ASSERT_BINARYOP_OK (op_in, "op for GB_ewise", GB0) ;
    ASSERT_MATRIX_OK (A, "A for GB_ewise", GB0) ;
    ASSERT_MATRIX_OK (B, "B for GB_ewise", GB0) ;

    // T has the same type as the output z for z=op(a,b)
    GrB_BinaryOp op = op_in ;
    GrB_Type T_type = op->ztype ;

    // check domains and dimensions for C<M> = accum (C,T)
    GB_OK (GB_compatible (C->type, C, M, Mask_struct, accum, T_type, Context)) ;

    // T=op(A,B) via op operator, so A and B must be compatible with z=op(a,b)
    GB_OK (GB_BinaryOp_compatible (op, NULL, A->type, B->type,
        GB_ignore_code, Context)) ;

    if (eWiseAdd)
    {
        if (is_eWiseUnion)
        {
            // alpha and beta scalars must be present
            GB_RETURN_IF_NULL_OR_FAULTY (alpha) ;
            GB_RETURN_IF_NULL_OR_FAULTY (beta) ;
            GB_MATRIX_WAIT (alpha) ;
            GB_MATRIX_WAIT (beta) ;
            if (GB_nnz ((GrB_Matrix) alpha) == 0)
            {
                GB_ERROR (GrB_EMPTY_OBJECT, "%s\n",
                    "alpha cannot be an empty scalar") ;
            }
            if (GB_nnz ((GrB_Matrix) beta) == 0)
            { 
                GB_ERROR (GrB_EMPTY_OBJECT, "%s\n",
                    "beta cannot be an empty scalar") ;
            }
            // C = op (A, beta) is done for entries in A but not B
            if (!GB_Type_compatible (op->ytype, beta->type))
            { 
                GB_ERROR (GrB_DOMAIN_MISMATCH,
                    "beta scalar of type [%s]\n"
                    "cannot be typecast to op input of type [%s]",
                    beta->type->name, op->ytype->name) ;
            }
            // C = op (alpha, B) is done for entries in B but not A
            if (!GB_Type_compatible (op->xtype, alpha->type))
            { 
                GB_ERROR (GrB_DOMAIN_MISMATCH,
                    "alpha scalar of type [%s]\n"
                    "cannot be typecast to op input of type [%s]",
                    alpha->type->name, op->xtype->name) ;
            }
        }
        else
        {
            // C = A is done for entries in A but not B
            if (!GB_Type_compatible (C->type, A->type))
            { 
                GB_ERROR (GrB_DOMAIN_MISMATCH,
                    "First input of type [%s]\n"
                    "cannot be typecast to final output of type [%s]",
                    A->type->name, C->type->name) ;
            }
            // C = B is done for entries in B but not A
            if (!GB_Type_compatible (C->type, B->type))
            { 
                GB_ERROR (GrB_DOMAIN_MISMATCH,
                    "Second input of type [%s]\n"
                    "cannot be typecast to final output of type [%s]",
                    B->type->name, C->type->name) ;
            }
        }
    }

    // check the dimensions
    int64_t anrows = (A_transpose) ? GB_NCOLS (A) : GB_NROWS (A) ;
    int64_t ancols = (A_transpose) ? GB_NROWS (A) : GB_NCOLS (A) ;
    int64_t bnrows = (B_transpose) ? GB_NCOLS (B) : GB_NROWS (B) ;
    int64_t bncols = (B_transpose) ? GB_NROWS (B) : GB_NCOLS (B) ;
    int64_t cnrows = GB_NROWS (C) ;
    int64_t cncols = GB_NCOLS (C) ;
    if (anrows != bnrows || ancols != bncols ||
        cnrows != anrows || cncols != bncols)
    { 
        GB_ERROR (GrB_DIMENSION_MISMATCH,
            "Dimensions not compatible:\n"
            "output is " GBd "-by-" GBd "\n"
            "first input is " GBd "-by-" GBd "%s\n"
            "second input is " GBd "-by-" GBd "%s",
            cnrows, cncols,
            anrows, ancols, A_transpose ? " (transposed)" : "",
            bnrows, bncols, B_transpose ? " (transposed)" : "") ;
    }

    // quick return if an empty mask M is complemented
    GB_RETURN_IF_QUICK_MASK (C, C_replace, M, Mask_comp, Mask_struct) ;

    //--------------------------------------------------------------------------
    // handle CSR and CSC formats
    //--------------------------------------------------------------------------

    GB_Opcode opcode = op->opcode ;
    bool op_is_positional = GB_OPCODE_IS_POSITIONAL (opcode) ;

    // CSC/CSR format of T is same as C.  Conform A and B to the format of C.
    bool T_is_csc = C->is_csc ;
    if (T_is_csc != A->is_csc)
    { 
        // Flip the sense of A_transpose.  For example, if C is CSC and A is
        // CSR, and A_transpose is true, then C=A'+B is being computed.  But
        // this is the same as C=A+B where A is treated as if it is CSC.
        A_transpose = !A_transpose ;
    }

    if (T_is_csc != B->is_csc)
    { 
        // Flip the sense of B_transpose.
        B_transpose = !B_transpose ;
    }

    if (A_transpose && B_transpose)
    { 
        // T=A'+B' is not computed.  Instead, T=A+B is computed first,
        // and then C = T' is computed.
        A_transpose = false ;
        B_transpose = false ;
        // The CSC format of T and C now differ.
        T_is_csc = !T_is_csc ;
    }

    if (!T_is_csc)
    {
        if (op_is_positional)
        { 
            // positional ops must be flipped, with i and j swapped
            op = GB_positional_binop_ijflip (op) ;
            opcode = op->opcode ;
        }
    }

    //--------------------------------------------------------------------------
    // decide when to apply the mask
    //--------------------------------------------------------------------------

    // GB_add and GB_emult can apply any non-complemented mask, but it is
    // faster to exploit the mask in GB_add / GB_emult only when it is very
    // sparse compared with A and B, or (in special cases) when it is easy
    // to apply.

    // check the CSR/CSC format of M
    bool M_is_csc = (M == NULL) ? T_is_csc : M->is_csc ;

    //--------------------------------------------------------------------------
    // transpose M if needed
    //--------------------------------------------------------------------------

    GrB_Matrix M1 = M ;
    bool M_transpose = (T_is_csc != M_is_csc) ;
    if (M_transpose)
    { 
        // MT = (bool) M'
        GBURBLE ("(M transpose) ") ;
        GB_CLEAR_STATIC_HEADER (MT, &MT_header) ;
        GB_OK (GB_transpose_cast (MT, GrB_BOOL, T_is_csc, M, Mask_struct,
            Context)) ;
        M1 = MT ;
    }

    //--------------------------------------------------------------------------
    // transpose A and/or B if needed:
    //--------------------------------------------------------------------------

    bool A_is_pattern = false, B_is_pattern = false ;
    if (!eWiseAdd)
    { 
        // eWiseMult can create AT and BT as iso if the op is FIRST, SECOND, or
        // PAIR; eWiseAdd cannot.
        GB_binop_pattern (&A_is_pattern, &B_is_pattern, false, opcode) ;
    }

    GrB_Matrix A1 = A ;
    if (A_transpose)
    { 
        // AT = (xtype) A' or AT = (xtype) one (A')
        GBURBLE ("(A transpose) ") ;
        GB_CLEAR_STATIC_HEADER (AT, &AT_header) ;
        GB_OK (GB_transpose_cast (AT, op->xtype, T_is_csc, A, A_is_pattern,
            Context)) ;
        A1 = AT ;
        ASSERT_MATRIX_OK (AT, "AT from transpose", GB0) ;
    }

    GrB_Matrix B1 = B ;
    if (B_transpose)
    { 
        // BT = (ytype) B' or BT = (ytype) one (B')
        GBURBLE ("(B transpose) ") ;
        GB_CLEAR_STATIC_HEADER (BT, &BT_header) ;
        GB_OK (GB_transpose_cast (BT, op->ytype, T_is_csc, B, B_is_pattern,
            Context)) ;
        B1 = BT ;
        ASSERT_MATRIX_OK (BT, "BT from transpose", GB0) ;
    }

    //--------------------------------------------------------------------------
    // special cases
    //--------------------------------------------------------------------------

    // FUTURE::: handle more special cases:
    // C<M>+=A+B when C and A are dense, B is sparse.  M can be sparse.
    // C<M>+=A+B when C and B are dense, A is sparse.  M can be sparse.
    // C<M>+=A+B when C, A, and B are dense.  M can be sparse.
    // In all cases above, C remains dense and can be updated in-place
    // C_replace must be false.  M can be valued or structural.

    #ifndef GBCUDA_DEV

    bool C_as_if_full = GB_as_if_full (C) ;
    bool A_as_if_full = GB_as_if_full (A1) ;
    bool B_as_if_full = GB_as_if_full (B1) ;

    bool no_typecast =
        (op->ztype == C->type)              // no typecasting of C
        && (op->xtype == A1->type)          // no typecasting of A
        && (op->ytype == B1->type) ;        // no typecasting of B

    bool any_bitmap =
        GB_IS_BITMAP (C) ||
        GB_IS_BITMAP (M) ||
        GB_IS_BITMAP (A) ||
        GB_IS_BITMAP (B) ;

    bool any_pending_work =
        GB_ANY_PENDING_WORK (M1) ||
        GB_ANY_PENDING_WORK (A1) ||
        GB_ANY_PENDING_WORK (B1) ;

    bool any_iso = (A1->iso || B1->iso) ;

        // FUTURE: for sssp12:
        // C<A> = A+B where C is sparse and B is dense;
        // mask is structural, not complemented, C_replace is false.
        // C is not empty.  Use a kernel that computes T<A>=A+B
        // where T starts out empty; just iterate over the entries in A.

    if (A_as_if_full                        // A and B are as-if-full
        && B_as_if_full
        && !any_iso                         // A and B are not iso
        && (M == NULL) && !Mask_comp        // no mask
        && (C->is_csc == T_is_csc)          // no transpose of C
        && no_typecast                      // no typecasting
        && (opcode != GB_USER_binop_code)   // not a user-defined operator
        && !op_is_positional                // op is not positional
        && !any_bitmap                      // no bitmap matrices
        && !any_pending_work)               // no matrix has pending work
    {

        if (C_as_if_full                    // C is as-if-full
        && !C->iso                          // C is not iso
        && accum == op                      // accum is same as the op
        && (opcode >= GB_MIN_binop_code)    // subset of binary operators
        && (opcode <= GB_RDIV_binop_code))
        { 

            //------------------------------------------------------------------
            // C += A+B where all 3 matrices are dense
            //------------------------------------------------------------------

            // C_replace is ignored
            GBURBLE ("dense C+=A+B ") ;
            GB_dense_ewise3_accum (C, A1, B1, op, Context) ;    // cannot fail
            GB_FREE_ALL ;
            ASSERT_MATRIX_OK (C, "C output for GB_ewise, dense C+=A+B", GB0) ;
            return (GrB_SUCCESS) ;

        }
        else if (accum == NULL)             // no accum
        { 

            //------------------------------------------------------------------
            // C = A+B where A and B are dense (C is anything)
            //------------------------------------------------------------------

            // C_replace is ignored
            GBURBLE ("dense C=A+B ") ;
            info = GB_dense_ewise3_noaccum (C, C_as_if_full, A1, B1, op,
                Context) ;
            GB_FREE_ALL ;
            if (info == GrB_SUCCESS)
            {
                ASSERT_MATRIX_OK (C, "C output for GB_ewise, dense C=A+B", GB0);
            }
            return (info) ;
        }
    }

    #endif

    //--------------------------------------------------------------------------
    // T = A+B or A.*B, or with any mask M
    //--------------------------------------------------------------------------

    bool mask_applied = false ;
    GB_CLEAR_STATIC_HEADER (T, &T_header) ;

    if (eWiseAdd)
    { 

        //----------------------------------------------------------------------
        // T<any mask> = A+B
        //----------------------------------------------------------------------

        // TODO: check the mask condition in GB_add_sparsity.
        // Only exploit the mask in GB_add if it's more efficient than
        // exploiting it later, probably this condition:

            // (accum == NULL) && (C->is_csc == T->is_csc)
            // && (C_replace || GB_NNZ_UPPER_BOUND (C) == 0))

        // If that is true and the mask is applied, then T is transplanted as
        // the final C and the mask is no longer needed.  In this case, it
        // could be faster to exploit the mask duing GB_add.

        GB_OK (GB_add (T, T_type, T_is_csc, M1, Mask_struct, Mask_comp,
            &mask_applied, A1, B1, is_eWiseUnion, alpha, beta, op, Context)) ;

    }
    else
    {

        //----------------------------------------------------------------------
        // T<any mask> = A.*B
        //----------------------------------------------------------------------

        // T can be returned with shallow components derived from its inputs A1
        // and/or B1.  In particular, if T is hypersparse, T->h may be a
        // shallow copy of A1->h, B1->h, or M1->h.  T is hypersparse if any
        // matrix A1, B1, or M1 are hypersparse.  Internally, T->h always
        // starts as a shallow copy of A1->h, B1->h, or M1->h, but it may be
        // pruned by GB_hypermatrix_prune, and thus no longer shallow.

        GB_OK (GB_emult (T, T_type, T_is_csc, M1, Mask_struct, Mask_comp,
            &mask_applied, A1, B1, op, Context)) ;

        //----------------------------------------------------------------------
        // transplant shallow content from AT, BT, or MT
        //----------------------------------------------------------------------

        // If T is hypersparse, T->h is always a shallow copy of A1->h, B1->h,
        // or M1->h.  Any of the three matrices A1, B1, or M1 may be temporary
        // transposes, AT, BT, and MT respectively.  If T->h is a shallow cpoy
        // of a temporary matrix, then change the ownership of the T->h array,
        // from the temporary matrix into T, so that T->h is not freed when AT,
        // BT, and MT are freed.

        // GB_transpose can return all kinds of shallow components, particularly
        // when transposing vectors.  It can return AT->h as shallow copy of
        // A->i, for example.

        if (T->h_shallow)
        {
            // T->h is shallow and T is hypersparse
            ASSERT (GB_IS_HYPERSPARSE (T)) ;

            // one of A1, B1, or M1 is hypersparse
            ASSERT (GB_IS_HYPERSPARSE (A1) || GB_IS_HYPERSPARSE (B1) ||
                    GB_IS_HYPERSPARSE (M1))
            if (A_transpose && T->h == A1->h)
            { 
                // A1 is the temporary matrix AT.  AT->h might itself be a
                // shallow copy of A->h or A->i, from GB_transpose.
                ASSERT (A1 == AT) ;
                T->h_shallow = AT->h_shallow ;
                T->h_size = AT->h_size ;
                AT->h_shallow = true ;
            }
            else if (B_transpose && T->h == B1->h)
            { 
                // B1 is the temporary matrix BT.  BT->h might itself be a
                // shallow copy of B->h or B->i, from GB_transpose.
                ASSERT (B1 == BT) ;
                T->h_shallow = BT->h_shallow ;
                T->h_size = BT->h_size ;
                BT->h_shallow = true ;
            }
            else if (M_transpose && T->h == M1->h)
            { 
                // M1 is the temporary matrix MT.  MT->h might itself be a
                // shallow copy of M->h or M->i, from GB_transpose.
                ASSERT (M1 == MT) ;
                T->h_shallow = MT->h_shallow ;
                T->h_size = MT->h_size ;
                MT->h_shallow = true ;
            }

            // T->h may still be shallow, but if so, it is a shallow copy of
            // some component of the user input matrices A, B, or M, and must
            // remain shallow.  A deep copy of it will be made when T->h is
            // transplanted into the result C.
            ASSERT (GB_IMPLIES (T->h_shallow,
                (T->h == A1->h || T->h == B1->h ||
                 (M1 != NULL && T->h == M1->h)))) ;
        }
    }

    //--------------------------------------------------------------------------
    // free the transposed matrices
    //--------------------------------------------------------------------------

    GB_Matrix_free (&AT) ;
    GB_Matrix_free (&BT) ;

    //--------------------------------------------------------------------------
    // C<M> = accum (C,T): accumulate the results into C via the mask
    //--------------------------------------------------------------------------

    ASSERT_MATRIX_OK (T, "T from GB_ewise, prior to C<M>=accum(C,T)", GB0) ;

    if ((accum == NULL) && (C->is_csc == T->is_csc)
        && (M == NULL || (M != NULL && mask_applied))
        && (C_replace || GB_NNZ_UPPER_BOUND (C) == 0))
    { 
        // C = 0 ; C = (ctype) T ; with the same CSR/CSC format.  The mask M
        // (if any) has already been applied.  If C is also empty, or to be
        // cleared anyway, and if accum is not present, then T can be
        // transplanted directly into C, as C = (ctype) T, typecasting if
        // needed.  If no typecasting is done then this takes no time at all
        // and is a pure transplant.  Also conform C to its desired
        // hypersparsity.
        GB_Matrix_free (&MT) ;
        GB_OK (GB_transplant_conform (C, C->type, &T, Context)) ;
        return (GB_block (C, Context)) ;
    }
    else
    { 
        // C<M> = accum (C,T)
        // GB_accum_mask also conforms C to its desired hypersparsity
        info = GB_accum_mask (C, M, MT, accum, &T, C_replace, Mask_comp,
            Mask_struct, Context) ;
        GB_Matrix_free (&MT) ;
        return (info) ;
    }
}