1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
|
//------------------------------------------------------------------------------
// GB_ewise_slice: slice the entries and vectors for an ewise operation
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// Constructs a set of tasks to compute C, for an element-wise operation that
// operates on two input matrices, C=op(A,B). These include:
// GB_add, GB_emult, and GB_masker, and many GB_subassign_* methods
// (02, 04, 06s_and_14, 08n, 08s_and_16, 09, 10_and_18, 11, 12_and_20).
// The mask is ignored for computing where to slice the work, but it is sliced
// once the location has been found.
// M, A, B: any sparsity structure (hypersparse, sparse, bitmap, or full).
// C: constructed as sparse or hypersparse in the caller.
#define GB_FREE_WORKSPACE \
{ \
GB_WERK_POP (Coarse, int64_t) ; \
GB_FREE_WORK (&Cwork, Cwork_size) ; \
}
#define GB_FREE_ALL \
{ \
GB_FREE_WORKSPACE ; \
GB_FREE_WORK (&TaskList, TaskList_size) ; \
}
#include "GB.h"
//------------------------------------------------------------------------------
// GB_ewise_slice
//------------------------------------------------------------------------------
GrB_Info GB_ewise_slice
(
// output:
GB_task_struct **p_TaskList, // array of structs
size_t *p_TaskList_size, // size of TaskList
int *p_ntasks, // # of tasks constructed
int *p_nthreads, // # of threads for eWise operation
// input:
const int64_t Cnvec, // # of vectors of C
const int64_t *restrict Ch, // vectors of C, if hypersparse
const int64_t *restrict C_to_M, // mapping of C to M
const int64_t *restrict C_to_A, // mapping of C to A
const int64_t *restrict C_to_B, // mapping of C to B
bool Ch_is_Mh, // if true, then Ch == Mh; GB_add only
const GrB_Matrix M, // mask matrix to slice (optional)
const GrB_Matrix A, // matrix to slice
const GrB_Matrix B, // matrix to slice
GB_Context Context
)
{
//--------------------------------------------------------------------------
// check inputs
//--------------------------------------------------------------------------
ASSERT (p_TaskList != NULL) ;
ASSERT (p_TaskList_size != NULL) ;
ASSERT (p_ntasks != NULL) ;
ASSERT (p_nthreads != NULL) ;
ASSERT_MATRIX_OK (A, "A for ewise_slice", GB0) ;
ASSERT (!GB_ZOMBIES (A)) ;
ASSERT (!GB_JUMBLED (A)) ;
ASSERT (!GB_PENDING (A)) ;
ASSERT_MATRIX_OK (B, "B for ewise_slice", GB0) ;
ASSERT (!GB_ZOMBIES (B)) ;
ASSERT (!GB_JUMBLED (B)) ;
ASSERT (!GB_PENDING (B)) ;
ASSERT_MATRIX_OK_OR_NULL (M, "M for ewise_slice", GB0) ;
ASSERT (!GB_ZOMBIES (M)) ;
ASSERT (!GB_JUMBLED (M)) ;
ASSERT (!GB_PENDING (M)) ;
(*p_TaskList ) = NULL ;
(*p_TaskList_size) = 0 ;
(*p_ntasks ) = 0 ;
(*p_nthreads ) = 1 ;
int64_t *restrict Cwork = NULL ; size_t Cwork_size = 0 ;
GB_WERK_DECLARE (Coarse, int64_t) ; // size ntasks1+1
int ntasks1 = 0 ;
//--------------------------------------------------------------------------
// determine # of threads to use
//--------------------------------------------------------------------------
GB_GET_NTHREADS_MAX (nthreads_max, chunk, Context) ;
//--------------------------------------------------------------------------
// allocate the initial TaskList
//--------------------------------------------------------------------------
// Allocate the TaskList to hold at least 2*ntask0 tasks. It will grow
// later, if needed. Usually, 64*nthreads_max is enough, but in a few cases
// fine tasks can cause this number to be exceeded. If that occurs,
// TaskList is reallocated.
// When the mask is present, it is often fastest to break the work up
// into tasks, even when nthreads_max is 1.
GB_task_struct *restrict TaskList = NULL ; size_t TaskList_size = 0 ;
int max_ntasks = 0 ;
int ntasks0 = (M == NULL && nthreads_max == 1) ? 1 : (32 * nthreads_max) ;
GB_REALLOC_TASK_WORK (TaskList, ntasks0, max_ntasks) ;
//--------------------------------------------------------------------------
// check for quick return for a single task
//--------------------------------------------------------------------------
if (Cnvec == 0 || ntasks0 == 1)
{
// construct a single coarse task that computes all of C
TaskList [0].kfirst = 0 ;
TaskList [0].klast = Cnvec-1 ;
(*p_TaskList ) = TaskList ;
(*p_TaskList_size) = TaskList_size ;
(*p_ntasks ) = (Cnvec == 0) ? 0 : 1 ;
(*p_nthreads ) = 1 ;
return (GrB_SUCCESS) ;
}
//--------------------------------------------------------------------------
// get A, B, and M
//--------------------------------------------------------------------------
const int64_t vlen = A->vlen ;
const int64_t *restrict Ap = A->p ;
const int64_t *restrict Ai = A->i ;
const int64_t *restrict Bp = B->p ;
const int64_t *restrict Bi = B->i ;
bool Ch_is_Ah = (Ch != NULL && A->h != NULL && Ch == A->h) ;
bool Ch_is_Bh = (Ch != NULL && B->h != NULL && Ch == B->h) ;
const int64_t *restrict Mp = NULL ;
const int64_t *restrict Mi = NULL ;
bool M_is_hyper = GB_IS_HYPERSPARSE (M) ;
if (M != NULL)
{
Mp = M->p ;
Mi = M->i ;
// Ch_is_Mh is true if either true on input (for GB_add, which denotes
// that Ch is a deep copy of M->h), or if Ch is a shallow copy of M->h.
Ch_is_Mh = Ch_is_Mh || (Ch != NULL && M_is_hyper && Ch == M->h) ;
}
//--------------------------------------------------------------------------
// allocate workspace
//--------------------------------------------------------------------------
Cwork = GB_MALLOC_WORK (Cnvec+1, int64_t, &Cwork_size) ;
if (Cwork == NULL)
{
// out of memory
GB_FREE_ALL ;
return (GrB_OUT_OF_MEMORY) ;
}
//--------------------------------------------------------------------------
// compute an estimate of the work for each vector of C
//--------------------------------------------------------------------------
int nthreads_for_Cwork = GB_nthreads (Cnvec, chunk, nthreads_max) ;
int64_t k ;
#pragma omp parallel for num_threads(nthreads_for_Cwork) schedule(static)
for (k = 0 ; k < Cnvec ; k++)
{
//----------------------------------------------------------------------
// get the C(:,j) vector
//----------------------------------------------------------------------
int64_t j = GBH (Ch, k) ;
//----------------------------------------------------------------------
// get the corresponding vector of A
//----------------------------------------------------------------------
int64_t kA ;
if (C_to_A != NULL)
{
// A is hypersparse and the C_to_A mapping has been created
ASSERT (GB_IS_HYPERSPARSE (A)) ;
kA = C_to_A [k] ;
ASSERT (kA >= -1 && kA < A->nvec) ;
if (kA >= 0)
{
ASSERT (j == GBH (A->h, kA)) ;
}
}
else if (Ch_is_Ah)
{
// A is hypersparse, but Ch is a shallow copy of A->h
ASSERT (GB_IS_HYPERSPARSE (A)) ;
kA = k ;
ASSERT (j == A->h [kA]) ;
}
else
{
// A is sparse, bitmap, or full
ASSERT (!GB_IS_HYPERSPARSE (A)) ;
kA = j ;
}
//----------------------------------------------------------------------
// get the corresponding vector of B
//----------------------------------------------------------------------
int64_t kB ;
if (C_to_B != NULL)
{
// B is hypersparse and the C_to_B mapping has been created
ASSERT (GB_IS_HYPERSPARSE (B)) ;
kB = C_to_B [k] ;
ASSERT (kB >= -1 && kB < B->nvec) ;
if (kB >= 0)
{
ASSERT (j == GBH (B->h, kB)) ;
}
}
else if (Ch_is_Bh)
{
// B is hypersparse, but Ch is a shallow copy of B->h
ASSERT (GB_IS_HYPERSPARSE (B)) ;
kB = k ;
ASSERT (j == B->h [kB]) ;
}
else
{
// B is sparse, bitmap, or full
ASSERT (!GB_IS_HYPERSPARSE (B)) ;
kB = j ;
}
//----------------------------------------------------------------------
// estimate the work for C(:,j)
//----------------------------------------------------------------------
ASSERT (kA >= -1 && kA < A->nvec) ;
ASSERT (kB >= -1 && kB < B->nvec) ;
const int64_t aknz = (kA < 0) ? 0 :
((Ap == NULL) ? vlen : (Ap [kA+1] - Ap [kA])) ;
const int64_t bknz = (kB < 0) ? 0 :
((Bp == NULL) ? vlen : (Bp [kB+1] - Bp [kB])) ;
Cwork [k] = aknz + bknz + 1 ;
}
//--------------------------------------------------------------------------
// replace Cwork with its cumulative sum
//--------------------------------------------------------------------------
GB_cumsum (Cwork, Cnvec, NULL, nthreads_for_Cwork, Context) ;
double cwork = (double) Cwork [Cnvec] ;
//--------------------------------------------------------------------------
// determine # of threads and tasks for the eWise operation
//--------------------------------------------------------------------------
int nthreads = GB_nthreads (cwork, chunk, nthreads_max) ;
ntasks0 = (M == NULL && nthreads == 1) ? 1 : (32 * nthreads) ;
double target_task_size = cwork / (double) (ntasks0) ;
target_task_size = GB_IMAX (target_task_size, chunk) ;
ntasks1 = cwork / target_task_size ;
ntasks1 = GB_IMAX (ntasks1, 1) ;
//--------------------------------------------------------------------------
// slice the work into coarse tasks
//--------------------------------------------------------------------------
GB_WERK_PUSH (Coarse, ntasks1 + 1, int64_t) ;
if (Coarse == NULL)
{
// out of memory
GB_FREE_ALL ;
return (GrB_OUT_OF_MEMORY) ;
}
GB_pslice (Coarse, Cwork, Cnvec, ntasks1, false) ;
//--------------------------------------------------------------------------
// construct all tasks, both coarse and fine
//--------------------------------------------------------------------------
int ntasks = 0 ;
for (int t = 0 ; t < ntasks1 ; t++)
{
//----------------------------------------------------------------------
// coarse task computes C (:,k:klast)
//----------------------------------------------------------------------
int64_t k = Coarse [t] ;
int64_t klast = Coarse [t+1] - 1 ;
if (k >= Cnvec)
{
//------------------------------------------------------------------
// all tasks have been constructed
//------------------------------------------------------------------
break ;
}
else if (k < klast)
{
//------------------------------------------------------------------
// coarse task has 2 or more vectors
//------------------------------------------------------------------
// This is a non-empty coarse-grain task that does two or more
// entire vectors of C, vectors k:klast, inclusive.
GB_REALLOC_TASK_WORK (TaskList, ntasks + 1, max_ntasks) ;
TaskList [ntasks].kfirst = k ;
TaskList [ntasks].klast = klast ;
ntasks++ ;
}
else
{
//------------------------------------------------------------------
// coarse task has 0 or 1 vectors
//------------------------------------------------------------------
// As a coarse-grain task, this task is empty or does a single
// vector, k. Vector k must be removed from the work done by this
// and any other coarse-grain task, and split into one or more
// fine-grain tasks.
for (int tt = t ; tt < ntasks1 ; tt++)
{
// remove k from the initial slice tt
if (Coarse [tt] == k)
{
// remove k from task tt
Coarse [tt] = k+1 ;
}
else
{
// break, k not in task tt
break ;
}
}
//------------------------------------------------------------------
// get the vector of C
//------------------------------------------------------------------
int64_t j = GBH (Ch, k) ;
//------------------------------------------------------------------
// get the corresponding vector of A
//------------------------------------------------------------------
int64_t kA ;
if (C_to_A != NULL)
{
// A is hypersparse and the C_to_A mapping has been created
ASSERT (GB_IS_HYPERSPARSE (A)) ;
kA = C_to_A [k] ;
}
else if (Ch_is_Ah)
{
// A is hypersparse, but Ch is a shallow copy of A->h
ASSERT (GB_IS_HYPERSPARSE (A)) ;
kA = k ;
}
else
{
// A is sparse, bitmap, or full
ASSERT (!GB_IS_HYPERSPARSE (A)) ;
kA = j ;
}
int64_t pA_start = (kA < 0) ? (-1) : GBP (Ap, kA, vlen) ;
int64_t pA_end = (kA < 0) ? (-1) : GBP (Ap, kA+1, vlen) ;
bool a_empty = (pA_end == pA_start) ;
//------------------------------------------------------------------
// get the corresponding vector of B
//------------------------------------------------------------------
int64_t kB ;
if (C_to_B != NULL)
{
// B is hypersparse and the C_to_B mapping has been created
ASSERT (GB_IS_HYPERSPARSE (B)) ;
kB = C_to_B [k] ;
}
else if (Ch_is_Bh)
{
// B is hypersparse, but Ch is a shallow copy of B->h
ASSERT (GB_IS_HYPERSPARSE (B)) ;
kB = k ;
}
else
{
// B is sparse, bitmap, or full
ASSERT (!GB_IS_HYPERSPARSE (B)) ;
kB = j ;
}
int64_t pB_start = (kB < 0) ? (-1) : GBP (Bp, kB, vlen) ;
int64_t pB_end = (kB < 0) ? (-1) : GBP (Bp, kB+1, vlen) ;
bool b_empty = (pB_end == pB_start) ;
//------------------------------------------------------------------
// get the corresponding vector of M, if present
//------------------------------------------------------------------
// M can have any sparsity structure (hyper, sparse, bitmap, full)
int64_t pM_start = -1 ;
int64_t pM_end = -1 ;
if (M != NULL)
{
int64_t kM ;
if (C_to_M != NULL)
{
// M is hypersparse and the C_to_M mapping has been created
ASSERT (GB_IS_HYPERSPARSE (M)) ;
kM = C_to_M [k] ;
}
else if (Ch_is_Mh)
{
// M is hypersparse, but Ch is a copy of Mh
ASSERT (GB_IS_HYPERSPARSE (M)) ;
// Ch is a deep or shallow copy of Mh
kM = k ;
}
else
{
// M is sparse, bitmap, or full
ASSERT (!GB_IS_HYPERSPARSE (M)) ;
kM = j ;
}
pM_start = (kM < 0) ? -1 : GBP (Mp, kM, vlen) ;
pM_end = (kM < 0) ? -1 : GBP (Mp, kM+1, vlen) ;
}
bool m_empty = (pM_end == pM_start) ;
//------------------------------------------------------------------
// determine the # of fine-grain tasks to create for vector k
//------------------------------------------------------------------
double ckwork = Cwork [k+1] - Cwork [k] ;
int nfine = ckwork / target_task_size ;
nfine = GB_IMAX (nfine, 1) ;
// make the TaskList bigger, if needed
GB_REALLOC_TASK_WORK (TaskList, ntasks + nfine, max_ntasks) ;
//------------------------------------------------------------------
// create the fine-grain tasks
//------------------------------------------------------------------
if (nfine == 1)
{
//--------------------------------------------------------------
// this is a single coarse task for all of vector k
//--------------------------------------------------------------
TaskList [ntasks].kfirst = k ;
TaskList [ntasks].klast = k ;
ntasks++ ;
}
else
{
//--------------------------------------------------------------
// slice vector k into nfine fine tasks
//--------------------------------------------------------------
// first fine task starts at the top of vector k
ASSERT (ntasks < max_ntasks) ;
TaskList [ntasks].kfirst = k ;
TaskList [ntasks].klast = -1 ; // this is a fine task
TaskList [ntasks].pM = (m_empty) ? -1 : pM_start ;
TaskList [ntasks].pA = (a_empty) ? -1 : pA_start ;
TaskList [ntasks].pB = (b_empty) ? -1 : pB_start ;
TaskList [ntasks].len = 0 ; // to be determined below
ntasks++ ;
int64_t ilast = 0, i = 0 ;
for (int tfine = 1 ; tfine < nfine ; tfine++)
{
double target_work = ((nfine-tfine) * ckwork) / nfine ;
int64_t pM, pA, pB ;
GB_slice_vector (&i, &pM, &pA, &pB,
pM_start, pM_end, Mi,
pA_start, pA_end, Ai,
pB_start, pB_end, Bi,
vlen, target_work) ;
// prior task ends at pM-1, pA-1, and pB-1
TaskList [ntasks-1].pM_end = pM ;
TaskList [ntasks-1].pA_end = pA ;
TaskList [ntasks-1].pB_end = pB ;
// prior task handles indices ilast:i-1
TaskList [ntasks-1].len = i - ilast ;
// this task starts at pM, pA, and pB
ASSERT (ntasks < max_ntasks) ;
TaskList [ntasks].kfirst = k ;
TaskList [ntasks].klast = -1 ; // this is a fine task
TaskList [ntasks].pM = pM ;
TaskList [ntasks].pA = pA ;
TaskList [ntasks].pB = pB ;
// advance to the next task
ntasks++ ;
ilast = i ;
}
// Terminate the last fine task.
ASSERT (ntasks <= max_ntasks) ;
TaskList [ntasks-1].pM_end = (m_empty) ? -1 : pM_end ;
TaskList [ntasks-1].pA_end = (a_empty) ? -1 : pA_end ;
TaskList [ntasks-1].pB_end = (b_empty) ? -1 : pB_end ;
TaskList [ntasks-1].len = vlen - i ;
}
}
}
ASSERT (ntasks <= max_ntasks) ;
//--------------------------------------------------------------------------
// free workspace and return result
//--------------------------------------------------------------------------
GB_FREE_WORKSPACE ;
(*p_TaskList ) = TaskList ;
(*p_TaskList_size) = TaskList_size ;
(*p_ntasks ) = ntasks ;
(*p_nthreads ) = nthreads ;
return (GrB_SUCCESS) ;
}
|