1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
|
//------------------------------------------------------------------------------
// GB_extractTuples: extract all the tuples from a matrix
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// Extracts all tuples from a matrix, like [I,J,X] = find (A). If any
// parameter I, J and/or X is NULL, then that component is not extracted. The
// size of the I, J, and X arrays (those that are not NULL) is given by nvals,
// which must be at least as large as GrB_nvals (&nvals, A). The values in the
// matrix are typecasted to the type of X, as needed.
// This function does the work for the user-callable GrB_*_extractTuples
// functions, and helps build the tuples for GB_concat_hyper.
// Tf A is iso and X is not NULL, the iso scalar Ax [0] is expanded into X.
#include "GB.h"
#define GB_FREE_ALL \
{ \
GB_FREE_WORK (&Ap, Ap_size) ; \
GB_FREE_WORK (&X_bitmap, X_bitmap_size) ; \
}
GrB_Info GB_extractTuples // extract all tuples from a matrix
(
GrB_Index *I_out, // array for returning row indices of tuples
GrB_Index *J_out, // array for returning col indices of tuples
void *X, // array for returning values of tuples
GrB_Index *p_nvals, // I,J,X size on input; # tuples on output
const GB_Type_code xcode, // type of array X
const GrB_Matrix A, // matrix to extract tuples from
GB_Context Context
)
{
//--------------------------------------------------------------------------
// check inputs
//--------------------------------------------------------------------------
GrB_Info info ;
GB_void *restrict X_bitmap = NULL ; size_t X_bitmap_size = 0 ;
int64_t *restrict Ap = NULL ; size_t Ap_size = 0 ;
ASSERT_MATRIX_OK (A, "A to extract", GB0) ;
ASSERT (p_nvals != NULL) ;
// delete any lingering zombies and assemble any pending tuples;
// allow A to remain jumbled
GB_MATRIX_WAIT_IF_PENDING_OR_ZOMBIES (A) ;
GB_BURBLE_DENSE (A, "(A %s) ") ;
ASSERT (xcode <= GB_UDT_code) ;
const GB_Type_code acode = A->type->code ;
const size_t asize = A->type->size ;
// xcode and A must be compatible
if (!GB_code_compatible (xcode, acode))
{
return (GrB_DOMAIN_MISMATCH) ;
}
const int64_t anz = GB_nnz (A) ;
if (anz == 0)
{
// no work to do
(*p_nvals) = 0 ;
return (GrB_SUCCESS) ;
}
int64_t nvals = *p_nvals ; // size of I,J,X on input
if (nvals < anz && (I_out != NULL || J_out != NULL || X != NULL))
{
// output arrays are not big enough
return (GrB_INSUFFICIENT_SPACE) ;
}
//-------------------------------------------------------------------------
// determine the number of threads to use
//-------------------------------------------------------------------------
GB_GET_NTHREADS_MAX (nthreads_max, chunk, Context) ;
int nthreads = GB_nthreads (anz + A->nvec, chunk, nthreads_max) ;
//-------------------------------------------------------------------------
// handle the CSR/CSC format
//--------------------------------------------------------------------------
GrB_Index *I, *J ;
if (A->is_csc)
{
I = I_out ;
J = J_out ;
}
else
{
I = J_out ;
J = I_out ;
}
//--------------------------------------------------------------------------
// bitmap case
//--------------------------------------------------------------------------
if (GB_IS_BITMAP (A))
{
//----------------------------------------------------------------------
// allocate workspace
//----------------------------------------------------------------------
bool need_typecast = (X != NULL) && (xcode != acode) ;
if (need_typecast)
{
// X must be typecasted
int64_t anzmax = GB_IMAX (anz, 1) ;
X_bitmap = GB_MALLOC_WORK (anzmax*asize, GB_void, &X_bitmap_size) ;
}
Ap = GB_MALLOC_WORK (A->vdim+1, int64_t, &Ap_size) ;
if (Ap == NULL || (need_typecast && X_bitmap == NULL))
{
// out of memory
GB_FREE_ALL ;
return (GrB_OUT_OF_MEMORY) ;
}
//----------------------------------------------------------------------
// extract the tuples
//----------------------------------------------------------------------
// TODO: pass xcode to GB_convert_bitmap_worker and let it do the
// typecasting. This works for now, however.
// if A is iso, GB_convert_bitmap_worker expands the iso scalar
// into its result, X or X_bitmap
GB_OK (GB_convert_bitmap_worker (Ap, (int64_t *) I, (int64_t *) J,
(GB_void *) (need_typecast ? X_bitmap : X), NULL, A, Context)) ;
//----------------------------------------------------------------------
// typecast X if needed
//----------------------------------------------------------------------
if (need_typecast)
{
// typecast the values from X_bitmap into X
ASSERT (X != NULL) ;
ASSERT (xcode != acode) ;
GB_cast_array ((GB_void *) X, xcode, X_bitmap, acode, NULL, anz,
nthreads) ;
}
}
else
{
//----------------------------------------------------------------------
// sparse, hypersparse, or full case
//----------------------------------------------------------------------
//----------------------------------------------------------------------
// extract the row indices
//----------------------------------------------------------------------
if (I != NULL)
{
if (A->i == NULL)
{
// A is full; construct the row indices
int64_t avlen = A->vlen ;
int64_t p ;
#pragma omp parallel for num_threads(nthreads) schedule(static)
for (p = 0 ; p < anz ; p++)
{
I [p] = (p % avlen) ;
}
}
else
{
GB_memcpy (I, A->i, anz * sizeof (int64_t), nthreads) ;
}
}
//----------------------------------------------------------------------
// extract the column indices
//----------------------------------------------------------------------
if (J != NULL)
{
GB_OK (GB_extract_vector_list ((int64_t *) J, A, Context)) ;
}
//----------------------------------------------------------------------
// extract the values
//----------------------------------------------------------------------
if (X != NULL)
{
if (A->iso)
{
// typecast the scalar and expand it into X
size_t xsize = GB_code_size (xcode, asize) ;
GB_void scalar [GB_VLA(xsize)] ;
GB_cast_scalar (scalar, xcode, A->x, acode, asize) ;
GB_iso_expand (X, anz, scalar, xsize, Context) ;
}
else if (xcode == acode)
{
// copy the values from A into X, no typecast
GB_memcpy (X, A->x, anz * asize, nthreads) ;
}
else
{
// typecast the values from A into X
ASSERT (X != NULL) ;
GB_cast_array ((GB_void *) X, xcode, (GB_void *) A->x, acode,
NULL, anz, nthreads) ;
}
}
}
//--------------------------------------------------------------------------
// free workspace and return result
//--------------------------------------------------------------------------
*p_nvals = anz ; // number of tuples extracted
GB_FREE_ALL ;
return (GrB_SUCCESS) ;
}
|