1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
|
//------------------------------------------------------------------------------
// GB_helper.c: helper functions for @GrB interface
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// These functions are only used by the @GrB interface for
// SuiteSparse:GraphBLAS.
#include "GB_helper.h"
//------------------------------------------------------------------------------
// GB_NTHREADS: determine the number of threads to use
//------------------------------------------------------------------------------
#define GB_NTHREADS(work) \
int nthreads_max = GB_Global_nthreads_max_get ( ) ; \
double chunk = GB_Global_chunk_get ( ) ; \
int nthreads = GB_nthreads (work, chunk, nthreads_max) ;
//------------------------------------------------------------------------------
// GB_ALLOCATE_WORK: allocate per-thread workspace
//------------------------------------------------------------------------------
#define GB_ALLOCATE_WORK(work_type) \
size_t Work_size ; \
work_type *Work = GB_MALLOC_WORK (nthreads, work_type, &Work_size) ; \
if (Work == NULL) return (false) ;
//------------------------------------------------------------------------------
// GB_FREE_WORKSPACE: free per-thread workspace
//------------------------------------------------------------------------------
#define GB_FREE_WORKSPACE \
GB_FREE_WORK (&Work, Work_size) ;
//------------------------------------------------------------------------------
// GB_helper0: get the current wall-clock time from OpenMP
//------------------------------------------------------------------------------
double GB_helper0 (void)
{
return (GB_OPENMP_GET_WTIME) ;
}
//------------------------------------------------------------------------------
// GB_helper1: convert 0-based indices to 1-based for gbextracttuples
//------------------------------------------------------------------------------
void GB_helper1 // convert zero-based indices to one-based
(
double *restrict I_double, // output array
const GrB_Index *restrict I, // input array
int64_t nvals // size of input and output arrays
)
{
GB_NTHREADS (nvals) ;
int64_t k ;
#pragma omp parallel for num_threads(nthreads) schedule(static)
for (k = 0 ; k < nvals ; k++)
{
I_double [k] = (double) (I [k] + 1) ;
}
}
//------------------------------------------------------------------------------
// GB_helper1i: convert 0-based indices to 1-based for gbextracttuples
//------------------------------------------------------------------------------
void GB_helper1i // convert zero-based indices to one-based
(
int64_t *restrict I, // input/output array
int64_t nvals // size of input/output array
)
{
GB_NTHREADS (nvals) ;
int64_t k ;
#pragma omp parallel for num_threads(nthreads) schedule(static)
for (k = 0 ; k < nvals ; k++)
{
I [k] ++ ;
}
}
//------------------------------------------------------------------------------
// GB_helper3: convert 1-based indices to 0-based for gb_mxarray_to_list
//------------------------------------------------------------------------------
bool GB_helper3 // return true if OK, false on error
(
int64_t *restrict List, // size len, output array
const double *restrict List_double, // size len, input array
int64_t len,
int64_t *List_max // also compute the max entry in the list (1-based)
)
{
GB_NTHREADS (len) ;
ASSERT (List != NULL) ;
ASSERT (List_double != NULL) ;
ASSERT (List_max != NULL) ;
bool ok = true ;
int64_t listmax = -1 ;
GB_ALLOCATE_WORK (int64_t) ;
int tid ;
#pragma omp parallel for num_threads(nthreads) schedule(static)
for (tid = 0 ; tid < nthreads ; tid++)
{
bool my_ok = true ;
int64_t k1, k2, my_listmax = -1 ;
GB_PARTITION (k1, k2, len, tid, nthreads) ;
for (int64_t k = k1 ; k < k2 ; k++)
{
double x = List_double [k] ;
int64_t i = (int64_t) x ;
my_ok = my_ok && (x == (double) i) ;
my_listmax = GB_IMAX (my_listmax, i) ;
List [k] = i - 1 ;
}
// rather than create a separate per-thread boolean workspace, just
// use a sentinal value of INT64_MIN if non-integer indices appear
// in List_double.
Work [tid] = my_ok ? my_listmax : INT64_MIN ;
}
// wrapup
for (tid = 0 ; tid < nthreads ; tid++)
{
listmax = GB_IMAX (listmax, Work [tid]) ;
ok = ok && (Work [tid] != INT64_MIN) ;
}
GB_FREE_WORKSPACE ;
(*List_max) = listmax ;
return (ok) ;
}
//------------------------------------------------------------------------------
// GB_helper3i: convert 1-based indices to 0-based for gb_mxarray_to_list
//------------------------------------------------------------------------------
bool GB_helper3i // return true if OK, false on error
(
int64_t *restrict List, // size len, output array
const int64_t *restrict List_int64, // size len, input array
int64_t len,
int64_t *List_max // also compute the max entry in the list (1-based)
)
{
GB_NTHREADS (len) ;
int64_t listmax = -1 ;
GB_ALLOCATE_WORK (int64_t) ;
int tid ;
#pragma omp parallel for num_threads(nthreads) schedule(static)
for (tid = 0 ; tid < nthreads ; tid++)
{
int64_t k1, k2, my_listmax = -1 ;
GB_PARTITION (k1, k2, len, tid, nthreads) ;
for (int64_t k = k1 ; k < k2 ; k++)
{
int64_t i = List_int64 [k] ;
my_listmax = GB_IMAX (my_listmax, i) ;
List [k] = i - 1 ;
}
Work [tid] = my_listmax ;
}
// wrapup
for (tid = 0 ; tid < nthreads ; tid++)
{
listmax = GB_IMAX (listmax, Work [tid]) ;
}
GB_FREE_WORKSPACE ;
(*List_max) = listmax ;
return (true) ;
}
//------------------------------------------------------------------------------
// GB_helper4: find the max entry in a list of type GrB_Index
//------------------------------------------------------------------------------
bool GB_helper4 // return true if OK, false on error
(
const GrB_Index *restrict I, // array of size len
const int64_t len,
GrB_Index *List_max // also compute the max entry in the list (1-based,
// which is max(I)+1)
)
{
GB_NTHREADS (len) ;
GrB_Index listmax = 0 ;
GB_ALLOCATE_WORK (GrB_Index) ;
int tid ;
#pragma omp parallel for num_threads(nthreads) schedule(static)
for (tid = 0 ; tid < nthreads ; tid++)
{
int64_t k1, k2 ;
GrB_Index my_listmax = 0 ;
GB_PARTITION (k1, k2, len, tid, nthreads) ;
for (int64_t k = k1 ; k < k2 ; k++)
{
my_listmax = GB_IMAX (my_listmax, I [k]) ;
}
Work [tid] = my_listmax ;
}
// wrapup
for (tid = 0 ; tid < nthreads ; tid++)
{
listmax = GB_IMAX (listmax, Work [tid]) ;
}
GB_FREE_WORKSPACE ;
if (len > 0) listmax++ ;
(*List_max) = listmax ;
return (true) ;
}
//------------------------------------------------------------------------------
// GB_helper5: construct pattern of S for gblogassign
//------------------------------------------------------------------------------
void GB_helper5 // construct pattern of S
(
GrB_Index *restrict Si, // array of size anz
GrB_Index *restrict Sj, // array of size anz
const GrB_Index *restrict Mi, // array of size mnz, M->i, may be NULL
const GrB_Index *restrict Mj, // array of size mnz,
const int64_t mvlen, // M->vlen
GrB_Index *restrict Ai, // array of size anz, A->i, may be NULL
const int64_t avlen, // M->vlen
const GrB_Index anz
)
{
GB_NTHREADS (anz) ;
ASSERT (Mj != NULL) ;
ASSERT (Si != NULL) ;
ASSERT (Sj != NULL) ;
int64_t k ;
#pragma omp parallel for num_threads(nthreads) schedule(static)
for (k = 0 ; k < anz ; k++)
{
int64_t i = GBI (Ai, k, avlen) ;
Si [k] = GBI (Mi, i, mvlen) ;
Sj [k] = Mj [i] ;
}
}
//------------------------------------------------------------------------------
// GB_helper7: Kx = uint64 (0:mnz-1), for gblogextract
//------------------------------------------------------------------------------
// TODO: use GrB_apply with a positional operator instead
void GB_helper7 // Kx = uint64 (0:mnz-1)
(
uint64_t *restrict Kx, // array of size mnz
const GrB_Index mnz
)
{
GB_NTHREADS (mnz) ;
int64_t k ;
#pragma omp parallel for num_threads(nthreads) schedule(static)
for (k = 0 ; k < mnz ; k++)
{
Kx [k] = k ;
}
}
//------------------------------------------------------------------------------
// GB_helper8: expand a scalar into an array for gbbuild
//------------------------------------------------------------------------------
// TODO: use GrB_assign instead
void GB_helper8
(
GB_void *C, // output array of size nvals * s
GB_void *A, // input scalar of size s
GrB_Index nvals, // size of C
size_t s // size of each scalar
)
{
GB_NTHREADS (nvals) ;
int64_t k ;
#pragma omp parallel for num_threads(nthreads) schedule(static)
for (k = 0 ; k < nvals ; k++)
{
// C [k] = A [0]
memcpy (C + k * s, A, s) ;
}
}
//------------------------------------------------------------------------------
// GB_helper10: compute norm (x-y,p) of two dense FP32 or FP64 vectors
//------------------------------------------------------------------------------
// p can be:
// 0 or 2: 2-norm, sqrt (sum ((x-y).^2))
// 1: 1-norm, sum (abs (x-y))
// INT64_MAX inf-norm, max (abs (x-y))
// INT64_MIN (-inf)-norm, min (abs (x-y))
// other: p-norm not yet computed
double GB_helper10 // norm (x-y,p), or -1 on error
(
GB_void *x_arg, // float or double, depending on type parameter
bool x_iso, // true if x is iso
GB_void *y_arg, // same type as x, treat as zero if NULL
bool y_iso, // true if x is iso
GrB_Type type, // GrB_FP32 or GrB_FP64
int64_t p, // 0, 1, 2, INT64_MIN, or INT64_MAX
GrB_Index n
)
{
//--------------------------------------------------------------------------
// check inputs
//--------------------------------------------------------------------------
if (!(type == GrB_FP32 || type == GrB_FP64))
{
// type of x and y must be GrB_FP32 or GrB_FP64
return ((double) -1) ;
}
if (n == 0)
{
return ((double) 0) ;
}
//--------------------------------------------------------------------------
// allocate workspace and determine # of threads to use
//--------------------------------------------------------------------------
GB_NTHREADS (n) ;
GB_ALLOCATE_WORK (double) ;
#define xx(k) x [x_iso ? 0 : k]
#define yy(k) y [y_iso ? 0 : k]
//--------------------------------------------------------------------------
// each thread computes its partial norm
//--------------------------------------------------------------------------
int tid ;
#pragma omp parallel for num_threads(nthreads) schedule(static)
for (tid = 0 ; tid < nthreads ; tid++)
{
int64_t k1, k2 ;
GB_PARTITION (k1, k2, n, tid, nthreads) ;
if (type == GrB_FP32)
{
//------------------------------------------------------------------
// FP32 case
//------------------------------------------------------------------
float my_s = 0 ;
const float *x = (float *) x_arg ;
const float *y = (float *) y_arg ;
switch (p)
{
case 0: // Frobenius norm
case 2: // 2-norm: sqrt of sum of (x-y).^2
{
if (y == NULL)
{
for (int64_t k = k1 ; k < k2 ; k++)
{
float t = xx (k) ;
my_s += (t*t) ;
}
}
else
{
for (int64_t k = k1 ; k < k2 ; k++)
{
float t = (xx (k) - yy (k)) ;
my_s += (t*t) ;
}
}
}
break ;
case 1: // 1-norm: sum (abs (x-y))
{
if (y == NULL)
{
for (int64_t k = k1 ; k < k2 ; k++)
{
my_s += fabsf (xx (k)) ;
}
}
else
{
for (int64_t k = k1 ; k < k2 ; k++)
{
my_s += fabsf (xx (k) - yy (k)) ;
}
}
}
break ;
case INT64_MAX: // inf-norm: max (abs (x-y))
{
if (y == NULL)
{
for (int64_t k = k1 ; k < k2 ; k++)
{
my_s = fmaxf (my_s, fabsf (xx (k))) ;
}
}
else
{
for (int64_t k = k1 ; k < k2 ; k++)
{
my_s = fmaxf (my_s, fabsf (xx (k) - yy (k))) ;
}
}
}
break ;
case INT64_MIN: // (-inf)-norm: min (abs (x-y))
{
my_s = INFINITY ;
if (y == NULL)
{
for (int64_t k = k1 ; k < k2 ; k++)
{
my_s = fminf (my_s, fabsf (xx (k))) ;
}
}
else
{
for (int64_t k = k1 ; k < k2 ; k++)
{
my_s = fminf (my_s, fabsf (xx (k) - yy (k))) ;
}
}
}
break ;
default: ; // p-norm not yet supported
}
Work [tid] = (double) my_s ;
}
else
{
//------------------------------------------------------------------
// FP64 case
//------------------------------------------------------------------
double my_s = 0 ;
const double *x = (double *) x_arg ;
const double *y = (double *) y_arg ;
switch (p)
{
case 0: // Frobenius norm
case 2: // 2-norm: sqrt of sum of (x-y).^2
{
if (y == NULL)
{
for (int64_t k = k1 ; k < k2 ; k++)
{
double t = xx (k) ;
my_s += (t*t) ;
}
}
else
{
for (int64_t k = k1 ; k < k2 ; k++)
{
double t = (xx (k) - yy (k)) ;
my_s += (t*t) ;
}
}
}
break ;
case 1: // 1-norm: sum (abs (x-y))
{
if (y == NULL)
{
for (int64_t k = k1 ; k < k2 ; k++)
{
my_s += fabs (xx (k)) ;
}
}
else
{
for (int64_t k = k1 ; k < k2 ; k++)
{
my_s += fabs (xx (k) - yy (k)) ;
}
}
}
break ;
case INT64_MAX: // inf-norm: max (abs (x-y))
{
if (y == NULL)
{
for (int64_t k = k1 ; k < k2 ; k++)
{
my_s = fmax (my_s, fabs (xx (k))) ;
}
}
else
{
for (int64_t k = k1 ; k < k2 ; k++)
{
my_s = fmax (my_s, fabs (xx (k) - yy (k))) ;
}
}
}
break ;
case INT64_MIN: // (-inf)-norm: min (abs (x-y))
{
my_s = INFINITY ;
if (y == NULL)
{
for (int64_t k = k1 ; k < k2 ; k++)
{
my_s = fmin (my_s, fabs (xx (k))) ;
}
}
else
{
for (int64_t k = k1 ; k < k2 ; k++)
{
my_s = fmin (my_s, fabs (xx (k) - yy (k))) ;
}
}
}
break ;
default: ; // p-norm not yet supported
}
Work [tid] = my_s ;
}
}
//--------------------------------------------------------------------------
// combine results of each thread
//--------------------------------------------------------------------------
double s = 0 ;
switch (p)
{
case 0: // Frobenius norm
case 2: // 2-norm: sqrt of sum of (x-y).^2
{
for (int64_t tid = 0 ; tid < nthreads ; tid++)
{
s += Work [tid] ;
}
s = sqrt (s) ;
}
break ;
case 1: // 1-norm: sum (abs (x-y))
{
for (int64_t tid = 0 ; tid < nthreads ; tid++)
{
s += Work [tid] ;
}
}
break ;
case INT64_MAX: // inf-norm: max (abs (x-y))
{
for (int64_t tid = 0 ; tid < nthreads ; tid++)
{
s = fmax (s, Work [tid]) ;
}
}
break ;
case INT64_MIN: // (-inf)-norm: min (abs (x-y))
{
s = Work [0] ;
for (int64_t tid = 1 ; tid < nthreads ; tid++)
{
s = fmin (s, Work [tid]) ;
}
}
break ;
default: // p-norm not yet supported
s = -1 ;
}
//--------------------------------------------------------------------------
// free workspace and return result
//--------------------------------------------------------------------------
GB_FREE_WORKSPACE ;
return (s) ;
}
|