1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
|
//------------------------------------------------------------------------------
// GB_ijproperties: check I and determine its properties
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// check a list of indices I and determine its properties
#include "GB_ij.h"
// FUTURE:: if limit=0, print a different message. see also setEl, extractEl.
#define GB_ICHECK(i,limit) \
{ \
if ((i) < 0 || (i) >= (limit)) \
{ \
GB_ERROR (GrB_INDEX_OUT_OF_BOUNDS, \
"index " GBd " out of bounds, must be < " GBd , (i), (limit)) ; \
} \
}
GrB_Info GB_ijproperties // check I and determine its properties
(
// input:
const GrB_Index *I, // list of indices, or special
const int64_t ni, // length I, or special
const int64_t nI, // actual length from GB_ijlength
const int64_t limit, // I must be in the range 0 to limit-1
// input/output:
int *Ikind, // kind of I, from GB_ijlength
int64_t Icolon [3], // begin:inc:end from GB_ijlength
// output:
bool *I_is_unsorted, // true if I is out of order
bool *I_has_dupl, // true if I has a duplicate entry (undefined
// if I is unsorted)
bool *I_is_contig, // true if I is a contiguous list, imin:imax
int64_t *imin_result, // min (I)
int64_t *imax_result, // max (I)
GB_Context Context
)
{
//--------------------------------------------------------------------------
// check inputs
//--------------------------------------------------------------------------
// inputs:
// I: a list of indices if Ikind is GB_LIST
// limit: the matrix dimension (# of rows or # of columns)
// ni: only used if Ikind is GB_LIST: the length of the array I
// nI: the length of the list I, either actual or implicit
// input/output: these can be modified
// Ikind: GB_ALL, GB_RANGE, GB_STRIDE (both +/- inc), or GB_LIST
// Icolon: begin:inc:end for all but GB_LIST
// outputs:
// I_is_unsorted: true if Ikind == GB_LIST and not in ascending order
// I_is_contig: true if I has the form I = begin:end
// imin, imax: min (I) and max (I), but only including actual indices
// in the sequence. The end value of I=begin:inc:end may not be
// reached. For example if I=1:2:10 then max(I)=9, not 10.
ASSERT (I != NULL) ;
ASSERT (limit >= 0) ;
ASSERT (limit <= GB_NMAX) ;
int64_t imin, imax ;
//--------------------------------------------------------------------------
// scan I
//--------------------------------------------------------------------------
// scan the list of indices: check if OK, determine if they are
// unsorted, or contiguous, their min and max index, and actual length
bool I_unsorted = false ;
bool I_has_duplicates = false ;
bool I_contig = true ;
if ((*Ikind) == GB_ALL)
{
//----------------------------------------------------------------------
// I = 0:limit-1
//----------------------------------------------------------------------
imin = 0 ;
imax = limit-1 ;
ASSERT (Icolon [GxB_BEGIN] == imin) ;
ASSERT (Icolon [GxB_INC ] == 1) ;
ASSERT (Icolon [GxB_END ] == imax) ;
}
else if ((*Ikind) == GB_RANGE)
{
//----------------------------------------------------------------------
// I = imin:imax
//----------------------------------------------------------------------
imin = Icolon [GxB_BEGIN] ;
ASSERT (Icolon [GxB_INC] == 1) ;
imax = Icolon [GxB_END ] ;
if (imin > imax)
{
// imin > imax: list is empty
imin = limit ;
imax = -1 ;
}
else
{
// check the limits
GB_ICHECK (imin, limit) ;
GB_ICHECK (imax, limit) ;
}
}
else if ((*Ikind) == GB_STRIDE)
{
//----------------------------------------------------------------------
// I = imin:iinc:imax
//----------------------------------------------------------------------
// int64_t ibegin = Icolon [GxB_BEGIN] ;
int64_t iinc = Icolon [GxB_INC ] ;
// int64_t iend = Icolon [GxB_END ] ;
// if iinc == 1 on input, the kind has been changed to GB_RANGE
ASSERT (iinc != 1) ;
if (iinc == 0)
{
// stride is zero: list is empty, contiguous, and sorted
imin = limit ;
imax = -1 ;
}
else if (iinc > 0)
{
// stride is positive, get the first and last indices
imin = GB_ijlist (I, 0, GB_STRIDE, Icolon) ;
imax = GB_ijlist (I, nI-1, GB_STRIDE, Icolon) ;
}
else
{
// stride is negative, get the first and last indices
imin = GB_ijlist (I, nI-1, GB_STRIDE, Icolon) ;
imax = GB_ijlist (I, 0, GB_STRIDE, Icolon) ;
}
if (imin > imax)
{
// list is empty: so it is contiguous and sorted
imin = limit ;
imax = -1 ;
// change this to an empty GB_RANGE
(*Ikind) = GB_RANGE ;
Icolon [GxB_BEGIN] = imin ;
Icolon [GxB_INC ] = 1 ;
Icolon [GxB_END ] = imax ;
}
else
{
// list is contiguous if the stride is 1, not contiguous otherwise
I_contig = false ;
// check the limits
GB_ICHECK (imin, limit) ;
GB_ICHECK (imax, limit) ;
}
}
else // (*Ikind) == GB_LIST
{
//----------------------------------------------------------------------
// determine the number of threads to use
//----------------------------------------------------------------------
GB_GET_NTHREADS_MAX (nthreads_max, chunk, Context) ;
int nthreads = GB_nthreads (ni, chunk, nthreads_max) ;
int ntasks = (nthreads == 1) ? 1 : (8 * nthreads) ;
ntasks = GB_IMIN (ntasks, ni) ;
ntasks = GB_IMAX (ntasks, 0) ;
//----------------------------------------------------------------------
// I is an array of indices
//----------------------------------------------------------------------
// scan I to find imin and imax, and validate the list. Also determine
// if it is sorted or not, and contiguous or not.
imin = limit ;
imax = -1 ;
// allocate workspace for imin and imax
GB_WERK_DECLARE (Work_imin, int64_t) ;
GB_WERK_DECLARE (Work_imax, int64_t) ;
GB_WERK_PUSH (Work_imin, ntasks, int64_t) ;
GB_WERK_PUSH (Work_imax, ntasks, int64_t) ;
if (Work_imin == NULL || Work_imax == NULL)
{
// out of memory
GB_WERK_POP (Work_imax, int64_t) ;
GB_WERK_POP (Work_imin, int64_t) ;
return (GrB_OUT_OF_MEMORY) ;
}
int tid ;
#pragma omp parallel for num_threads(nthreads) schedule(dynamic,1) \
reduction(||:I_unsorted) reduction(&&:I_contig) \
reduction(||:I_has_duplicates)
for (tid = 0 ; tid < ntasks ; tid++)
{
int64_t my_imin = limit ;
int64_t my_imax = -1 ;
int64_t istart, iend ;
GB_PARTITION (istart, iend, ni, tid, ntasks) ;
int64_t ilast = (istart == 0) ? -1 : I [istart-1] ;
for (int64_t inew = istart ; inew < iend ; inew++)
{
int64_t i = I [inew] ;
if (inew > 0)
{
if (i < ilast)
{
// The list I of row indices is out of order, and
// C=A(I,J) will need to use qsort to sort each column.
// If C=A(I,J)' is computed, however, this flag will be
// set back to false, since qsort is not needed if the
// result is transposed.
I_unsorted = true ;
}
else if (i == ilast)
{
// I has at least one duplicate entry. If I is
// unsorted, then it is not known if I has duplicates
// or not. But if I is sorted, but with duplicates,
// then this flag will be true.
I_has_duplicates = true ;
}
if (i != ilast + 1)
{
I_contig = false ;
}
}
my_imin = GB_IMIN (my_imin, i) ;
my_imax = GB_IMAX (my_imax, i) ;
ilast = i ;
}
Work_imin [tid] = my_imin ;
Work_imax [tid] = my_imax ;
}
// wrapup
for (tid = 0 ; tid < ntasks ; tid++)
{
imin = GB_IMIN (imin, Work_imin [tid]) ;
imax = GB_IMAX (imax, Work_imax [tid]) ;
}
// free workspace
GB_WERK_POP (Work_imax, int64_t) ;
GB_WERK_POP (Work_imin, int64_t) ;
#ifdef GB_DEBUG
{
// check result with one thread
bool I_unsorted2 = false ;
bool I_has_dupl2 = false ;
bool I_contig2 = true ;
int64_t imin2 = limit ;
int64_t imax2 = -1 ;
int64_t ilast = -1 ;
for (int64_t inew = 0 ; inew < ni ; inew++)
{
int64_t i = I [inew] ;
if (inew > 0)
{
if (i < ilast) I_unsorted2 = true ;
else if (i == ilast) I_has_dupl2 = true ;
if (i != ilast + 1) I_contig2 = false ;
}
imin2 = GB_IMIN (imin2, i) ;
imax2 = GB_IMAX (imax2, i) ;
ilast = i ;
}
ASSERT (I_unsorted == I_unsorted2) ;
ASSERT (I_has_duplicates == I_has_dupl2) ;
ASSERT (I_contig == I_contig2) ;
ASSERT (imin == imin2) ;
ASSERT (imax == imax2) ;
}
#endif
if (ni > 0)
{
// check the limits
GB_ICHECK (imin, limit) ;
GB_ICHECK (imax, limit) ;
}
if (ni == 1)
{
// a single entry does not need to be sorted
ASSERT (I [0] == imin) ;
ASSERT (I [0] == imax) ;
ASSERT (I_unsorted == false) ;
ASSERT (I_contig == true) ;
}
if (ni == 0)
{
// the list is empty
ASSERT (imin == limit && imax == -1) ;
}
//----------------------------------------------------------------------
// change I if it is an explicit contiguous list of stride 1
//----------------------------------------------------------------------
if (I_contig)
{
// I is a contigous list of stride 1, imin:imax.
// change Ikind to GB_ALL if 0:limit-1, or GB_RANGE otherwise
if (imin == 0 && imax == limit-1)
{
(*Ikind) = GB_ALL ;
}
else
{
(*Ikind) = GB_RANGE ;
}
Icolon [GxB_BEGIN] = imin ;
Icolon [GxB_INC ] = 1 ;
Icolon [GxB_END ] = imax ;
}
}
//--------------------------------------------------------------------------
// return result
//--------------------------------------------------------------------------
ASSERT (GB_IMPLIES (I_contig, !I_unsorted)) ;
ASSERT (((*Ikind) == GB_ALL || (*Ikind) == GB_RANGE) == I_contig) ;
// I_is_contig is true if the list of row indices is a contiguous list,
// imin:imax. This is an important special case.
// I_is_unsorted is true if I is an explicit list, the list is non-empty,
// and the indices are not sorted in ascending order.
(*I_is_contig) = I_contig ;
(*I_is_unsorted) = I_unsorted ;
(*I_has_dupl) = I_has_duplicates ;
(*imin_result) = imin ;
(*imax_result) = imax ;
return (GrB_SUCCESS) ;
}
|