1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
|
//------------------------------------------------------------------------------
// GB_ijsort: sort an index array I and remove duplicates
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// Sort an index array and remove duplicates:
/*
[I1 I1k] = sort (I) ;
Iduplicate = [(I1 (1:end-1) == I1 (2:end)), false] ;
I2 = I1 (~Iduplicate) ;
I2k = I1k (~Iduplicate) ;
*/
#include "GB_ij.h"
#include "GB_sort.h"
#define GB_FREE_WORKSPACE \
{ \
GB_FREE_WORK (&Work, Work_size) ; \
}
GrB_Info GB_ijsort
(
const GrB_Index *restrict I, // size ni, where ni > 1 always holds
int64_t *restrict p_ni, // : size of I, output: # of indices in I2
GrB_Index *restrict *p_I2, // size ni2, where I2 [0..ni2-1]
// contains the sorted indices with duplicates removed.
size_t *I2_size_handle,
GrB_Index *restrict *p_I2k, // output array of size ni2
size_t *I2k_size_handle,
GB_Context Context
)
{
//--------------------------------------------------------------------------
// check inputs
//--------------------------------------------------------------------------
GrB_Info info ;
ASSERT (I != NULL) ;
ASSERT (p_ni != NULL) ;
ASSERT (p_I2 != NULL) ;
ASSERT (p_I2k != NULL) ;
//--------------------------------------------------------------------------
// get inputs
//--------------------------------------------------------------------------
GrB_Index *Work = NULL ; size_t Work_size = 0 ;
GrB_Index *restrict I2 = NULL ; size_t I2_size = 0 ;
GrB_Index *restrict I2k = NULL ; size_t I2k_size = 0 ;
int64_t ni = *p_ni ;
ASSERT (ni > 1) ;
int ntasks = 0 ;
//--------------------------------------------------------------------------
// determine the number of threads to use
//--------------------------------------------------------------------------
GB_GET_NTHREADS_MAX (nthreads_max, chunk, Context) ;
int nthreads = GB_nthreads (ni, chunk, nthreads_max) ;
//--------------------------------------------------------------------------
// determine number of tasks to create
//--------------------------------------------------------------------------
ntasks = (nthreads == 1) ? 1 : (32 * nthreads) ;
ntasks = GB_IMIN (ntasks, ni) ;
ntasks = GB_IMAX (ntasks, 1) ;
//--------------------------------------------------------------------------
// allocate workspace
//--------------------------------------------------------------------------
Work = GB_MALLOC_WORK (2*ni + ntasks + 1, GrB_Index, &Work_size) ;
if (Work == NULL)
{
// out of memory
return (GrB_OUT_OF_MEMORY) ;
}
GrB_Index *restrict I1 = Work ; // size ni
GrB_Index *restrict I1k = Work + ni ; // size ni
int64_t *restrict Count = (int64_t *) (Work + 2*ni) ; // size ntasks+1
//--------------------------------------------------------------------------
// copy I into I1 and construct I1k
//--------------------------------------------------------------------------
GB_memcpy (I1, I, ni * sizeof (GrB_Index), nthreads) ;
int64_t k ;
#pragma omp parallel for num_threads(nthreads) schedule(static)
for (k = 0 ; k < ni ; k++)
{
// the key is selected so that the last duplicate entry comes first in
// the sorted result. It must be adjusted later, so that the kth entry
// has a key equal to k.
I1k [k] = (ni-k) ;
}
//--------------------------------------------------------------------------
// sort [I1 I1k]
//--------------------------------------------------------------------------
info = GB_msort_2 ((int64_t *) I1, (int64_t *) I1k, ni, nthreads) ;
if (info != GrB_SUCCESS)
{
// out of memory
GB_FREE_WORKSPACE ;
return (GrB_OUT_OF_MEMORY) ;
}
//--------------------------------------------------------------------------
// count unique entries in I1
//--------------------------------------------------------------------------
int tid ;
#pragma omp parallel for num_threads(nthreads) schedule(dynamic,1)
for (tid = 0 ; tid < ntasks ; tid++)
{
int64_t kfirst, klast, my_count = (tid == 0) ? 1 : 0 ;
GB_PARTITION (kfirst, klast, ni, tid, ntasks) ;
for (int64_t k = GB_IMAX (kfirst,1) ; k < klast ; k++)
{
if (I1 [k-1] != I1 [k])
{
my_count++ ;
}
}
Count [tid] = my_count ;
}
GB_cumsum (Count, ntasks, NULL, 1, NULL) ;
int64_t ni2 = Count [ntasks] ;
//--------------------------------------------------------------------------
// allocate the result I2
//--------------------------------------------------------------------------
I2 = GB_MALLOC_WORK (ni2, GrB_Index, &I2_size) ;
I2k = GB_MALLOC_WORK (ni2, GrB_Index, &I2k_size) ;
if (I2 == NULL || I2k == NULL)
{
// out of memory
GB_FREE_WORKSPACE ;
GB_FREE_WORK (&I2, I2_size) ;
GB_FREE_WORK (&I2k, I2k_size) ;
return (GrB_OUT_OF_MEMORY) ;
}
//--------------------------------------------------------------------------
// construct the new list I2 from I1, removing duplicates
//--------------------------------------------------------------------------
#pragma omp parallel for num_threads(nthreads) schedule(dynamic,1)
for (tid = 0 ; tid < ntasks ; tid++)
{
int64_t kfirst, klast, k2 = Count [tid] ;
GB_PARTITION (kfirst, klast, ni, tid, ntasks) ;
if (tid == 0)
{
// the first entry in I1 is never a duplicate
I2 [k2] = I1 [0] ;
I2k [k2] = (ni - I1k [0]) ;
k2++ ;
}
for (int64_t k = GB_IMAX (kfirst,1) ; k < klast ; k++)
{
if (I1 [k-1] != I1 [k])
{
I2 [k2] = I1 [k] ;
I2k [k2] = ni - I1k [k] ;
k2++ ;
}
}
}
//--------------------------------------------------------------------------
// check result: compare with single-pass, single-threaded algorithm
//--------------------------------------------------------------------------
#ifdef GB_DEBUG
{
int64_t ni1 = 1 ;
I1k [0] = ni - I1k [0] ;
for (int64_t k = 1 ; k < ni ; k++)
{
if (I1 [ni1-1] != I1 [k])
{
I1 [ni1] = I1 [k] ;
I1k [ni1] = ni - I1k [k] ;
ni1++ ;
}
}
ASSERT (ni1 == ni2) ;
for (int64_t k = 0 ; k < ni1 ; k++)
{
ASSERT (I1 [k] == I2 [k]) ;
ASSERT (I1k [k] == I2k [k]) ;
}
}
#endif
//--------------------------------------------------------------------------
// free workspace and return the new sorted list
//--------------------------------------------------------------------------
GB_FREE_WORKSPACE ;
*(p_I2 ) = (GrB_Index *) I2 ; (*I2_size_handle ) = I2_size ;
*(p_I2k) = (GrB_Index *) I2k ; (*I2k_size_handle) = I2k_size ;
*(p_ni ) = (int64_t ) ni2 ;
return (GrB_SUCCESS) ;
}
|