1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
|
//------------------------------------------------------------------------------
// GB_import: import a matrix in any format
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// This method takes O(1) time and memory, unless secure is true (used
// when the input data is not trusted).
#include "GB_export.h"
#define GB_FREE_ALL GB_Matrix_free (A) ;
GrB_Info GB_import // import/pack a matrix in any format
(
bool packing, // pack if true, create and import false
GrB_Matrix *A, // handle of matrix to create, or pack
GrB_Type type, // type of matrix to create
GrB_Index vlen, // vector length
GrB_Index vdim, // vector dimension
bool is_sparse_vector, // true if A is a sparse GrB_Vector
// the 5 arrays:
GrB_Index **Ap, // pointers, for sparse and hypersparse formats.
GrB_Index Ap_size, // size of Ap in bytes
GrB_Index **Ah, // vector indices for hypersparse matrices
GrB_Index Ah_size, // size of Ah in bytes
int8_t **Ab, // bitmap, for bitmap format only.
GrB_Index Ab_size, // size of Ab in bytes
GrB_Index **Ai, // indices for hyper and sparse formats
GrB_Index Ai_size, // size of Ai in bytes
void **Ax, // values
GrB_Index Ax_size, // size of Ax in bytes
// additional information for specific formats:
GrB_Index nvals, // # of entries for bitmap format, or for a vector
// in CSC format.
bool jumbled, // if true, sparse/hypersparse may be jumbled.
GrB_Index nvec, // size of Ah for hypersparse format.
// information for all formats:
int sparsity, // hypersparse, sparse, bitmap, or full
bool is_csc, // if true then matrix is by-column, else by-row
bool iso, // if true then A is iso and only one entry is provided
// in Ax, regardless of nvals(A).
// fast vs secure import:
bool fast_import, // if true: trust the data, if false: check it
bool add_to_memtable, // if true: add to debug memtable
GB_Context Context
)
{
//--------------------------------------------------------------------------
// check inputs
//--------------------------------------------------------------------------
GB_RETURN_IF_NULL (A) ;
if (!packing)
{
(*A) = NULL ;
}
GB_RETURN_IF_NULL_OR_FAULTY (type) ;
if (vlen > GB_NMAX || vdim > GB_NMAX || nvals > GB_NMAX || nvec > GB_NMAX
|| Ap_size > GB_NMAX || Ah_size > GB_NMAX || Ab_size > GB_NMAX
|| Ai_size > GB_NMAX || Ax_size > GB_NMAX)
{
return (GrB_INVALID_VALUE) ;
}
if (Ax_size > 0)
{
// Ax and (*Ax) are ignored if Ax_size is zero
GB_RETURN_IF_NULL (Ax) ;
GB_RETURN_IF_NULL (*Ax) ;
}
bool ok = true ;
int64_t full_size = 0, Ax_size_for_non_iso ;
if (sparsity == GxB_BITMAP || sparsity == GxB_FULL)
{
ok = GB_int64_multiply ((GrB_Index *) &full_size, vlen, vdim) ;
if (!ok) full_size = INT64_MAX ;
}
switch (sparsity)
{
case GxB_HYPERSPARSE :
// check Ap and get nvals
if (nvec > vdim) return (GrB_INVALID_VALUE) ;
if (Ap_size < (((vdim == 1) ? 1 : nvec)+1) * sizeof (int64_t))
{
return (GrB_INVALID_VALUE) ;
}
GB_RETURN_IF_NULL (Ap) ;
GB_RETURN_IF_NULL (*Ap) ;
nvals = (*Ap) [nvec] ;
// check Ah
GB_RETURN_IF_NULL (Ah) ;
GB_RETURN_IF_NULL (*Ah) ;
if (Ah_size < nvec * sizeof (int64_t))
{
return (GrB_INVALID_VALUE) ;
}
// check Ai
if (Ai_size > 0)
{
GB_RETURN_IF_NULL (Ai) ;
GB_RETURN_IF_NULL (*Ai) ;
}
if (Ai_size < nvals * sizeof (int64_t))
{
return (GrB_INVALID_VALUE) ;
}
Ax_size_for_non_iso = nvals ;
break ;
case GxB_SPARSE :
// check Ap and get nvals
if (!is_sparse_vector)
{
// GxB_Vector_import_CSC passes in Ap as a NULL, and nvals as
// the # of entries in the vector. All other uses of GB_import
// pass in Ap for the sparse case
if (Ap_size < (vdim+1) * sizeof (int64_t))
{
return (GrB_INVALID_VALUE) ;
}
GB_RETURN_IF_NULL (Ap) ;
GB_RETURN_IF_NULL (*Ap) ;
nvals = (*Ap) [vdim] ;
}
// check Ai
if (Ai_size > 0)
{
GB_RETURN_IF_NULL (Ai) ;
GB_RETURN_IF_NULL (*Ai) ;
}
if (Ai_size < nvals * sizeof (int64_t))
{
return (GrB_INVALID_VALUE) ;
}
Ax_size_for_non_iso = nvals ;
break ;
case GxB_BITMAP :
// check Ab
if (!ok) return (GrB_INVALID_VALUE) ;
if (Ab_size > 0)
{
GB_RETURN_IF_NULL (Ab) ;
GB_RETURN_IF_NULL (*Ab) ;
}
if (nvals > full_size) return (GrB_INVALID_VALUE) ;
if (Ab_size < full_size) return (GrB_INVALID_VALUE) ;
Ax_size_for_non_iso = full_size ;
break ;
case GxB_FULL :
Ax_size_for_non_iso = full_size ;
break ;
default: ;
}
// check the size of Ax
if (iso)
{
// A is iso: Ax must be non-NULL and large enough to hold a single entry
GBURBLE ("(iso import) ") ;
if (*Ax == NULL || Ax_size < type->size)
{
return (GrB_INVALID_VALUE) ;
}
}
else
{
// A is non-iso: Ax_size must be zero (and Ax must then be NULL),
// or Ax_size must be at least as large as Ax_size_for_non_iso
if (!((Ax_size == 0 && *Ax == NULL) ||
(Ax_size >= Ax_size_for_non_iso && *Ax != NULL)))
{
return (GrB_INVALID_VALUE) ;
}
}
//--------------------------------------------------------------------------
// allocate/reuse the header of the matrix
//--------------------------------------------------------------------------
if (packing)
{
// clear the content and reuse the header
GB_phybix_free (*A) ;
ASSERT (!((*A)->static_header)) ;
}
// also create A->p if this is a sparse GrB_Vector
GrB_Info info = GB_new (A, // any sparsity, new or existing user header
type, vlen, vdim, is_sparse_vector ? GB_Ap_calloc : GB_Ap_null,
is_csc, sparsity, GB_Global_hyper_switch_get ( ), nvec, Context) ;
if (info != GrB_SUCCESS)
{
// out of memory
return (info) ;
}
// A never has a static header
ASSERT (!((*A)->static_header)) ;
//--------------------------------------------------------------------------
// import the matrix
//--------------------------------------------------------------------------
// transplant the user's content into the matrix
(*A)->magic = GB_MAGIC ;
(*A)->iso = iso ; // OK
switch (sparsity)
{
case GxB_HYPERSPARSE :
(*A)->nvec = nvec ;
// import A->h, then fall through to sparse case
(*A)->h = (int64_t *) (*Ah) ; (*Ah) = NULL ;
(*A)->h_size = Ah_size ;
if (add_to_memtable)
{
// for debugging only
#ifdef GB_MEMDUMP
printf ("import A->h to memtable: %p\n", (*A)->h) ;
#endif
GB_Global_memtable_add ((*A)->h, (*A)->h_size) ;
}
// fall through to the sparse case
case GxB_SPARSE :
(*A)->jumbled = jumbled ; // import jumbled status
(*A)->nvec_nonempty = -1 ; // not computed; delay until required
(*A)->nvals = nvals ;
if (is_sparse_vector)
{
// GxB_Vector_import_CSC passes in Ap as NULL
(*A)->p [1] = nvals ;
}
else
{
// import A->p, unless already created for a sparse CSC vector
(*A)->p = (int64_t *) (*Ap) ; (*Ap) = NULL ;
(*A)->p_size = Ap_size ;
if (add_to_memtable)
{
// for debugging only
#ifdef GB_MEMDUMP
printf ("import A->p to memtable: %p\n", (*A)->p) ;
#endif
GB_Global_memtable_add ((*A)->p, (*A)->p_size) ;
}
}
// import A->i
(*A)->i = (int64_t *) (*Ai) ; (*Ai) = NULL ;
(*A)->i_size = Ai_size ;
if (add_to_memtable)
{
// for debugging only
#ifdef GB_MEMDUMP
printf ("import A->i to memtable: %p\n", (*A)->i) ;
#endif
GB_Global_memtable_add ((*A)->i, (*A)->i_size) ;
}
break ;
case GxB_BITMAP :
(*A)->nvals = nvals ;
// import A->b
(*A)->b = (*Ab) ; (*Ab) = NULL ;
(*A)->b_size = Ab_size ;
if (add_to_memtable)
{
// for debugging only
#ifdef GB_MEMDUMP
printf ("import A->b to memtable: %p\n", (*A)->b) ;
#endif
GB_Global_memtable_add ((*A)->b, (*A)->b_size) ;
}
break ;
case GxB_FULL :
break ;
default: ;
}
if (Ax != NULL)
{
// import A->x
(*A)->x = (*Ax) ; (*Ax) = NULL ;
(*A)->x_size = Ax_size ;
if (add_to_memtable)
{
// for debugging only
#ifdef GB_MEMDUMP
printf ("import A->x to memtable: %p size: %lu\n",
(*A)->x, Ax_size) ;
#endif
GB_Global_memtable_add ((*A)->x, (*A)->x_size) ;
}
}
//--------------------------------------------------------------------------
// fast vs secure import
//--------------------------------------------------------------------------
if (!fast_import)
{
// Deserialization of untrusted data is a common security problem:
// https://cwe.mitre.org/data/definitions/502.html
//
// If fast_import is true, GB_import trusts its input data, so it can
// operate in O(1) time and memory.
//
// The import may be coming from untrusted data. To this point in this
// function, no kind of mangled data (malicious or inadvertant) can
// cause a failure. However, the content of the A->[phbix] arrays has
// not been exhaustively checked. This check takes time, so a fast
// import that trusts the input as valid can skip this check. The
// import is fast by default, but if the import comes from possibily
// untrusted sources (a file, say), then the user application should
// use the descriptor setting:
//
// GxB_set (desc, GxB_IMPORT, GxB_SECURE_IMPORT)
//
// and use the desc as input to GxB_Matrix_import_*. The check does
// not produce any output to stdout. It just checks the matrix
// exhaustively (and securly) and returns GrB_INVALID_OBJECT if
// anything is amiss. Once this check is passed, the data has been
// validated and security is ensured.
//
// Since it has no descriptor, GrB_Matrix_import assumes that it
// cannot trust its input. The method takes O(nvals(A)) time anyway,
// since it must copy the data from input arrays.
//
// The GxB_Matrix_import_* assumes the data can be trusted, since it
// is designed like the move constructor in C++, taking O(1) time by
// default. As a result, the descriptor default is fast, not secure.
//
// The time for this check is proportional to the size of the 5 input
// arrays, far higher than the O(1) time for the fast import. However,
// this check is essential if the input data is not trusted.
GBURBLE ("(secure) ") ;
GB_OK (GB_matvec_check (*A, "secure import", GxB_SILENT, NULL, "")) ;
}
//--------------------------------------------------------------------------
// import is successful
//--------------------------------------------------------------------------
// If debug is enabled, this check repeats the GB_matvec_check for the
// secure import.
ASSERT_MATRIX_OK (*A, "A imported", GB0) ;
return (GrB_SUCCESS) ;
}
|