1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
|
//------------------------------------------------------------------------------
// GB_iso_AxB: check for iso result for C=A*B and compute the iso scalar for C
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// Return true if C=A*B results in an iso matrix C, and return the iso value of
// C. The type of the matrix C and scalar c is semiring->add->ztype.
// If both A and B are full and iso, then C is also full and iso, for nearly
// all semirings. The inner dimension of the matrix multiply is required to
// compute the iso value of C. Assuming all matrices are CSC:
// C = A*B n = A->vdim == B->vlen
// C = A'*B n = A->vlen == B->vlen
// C = A*B' n = A->vdim == B->vdim
// C = A'*B' n = A->vlen == B->vdim
#include "GB_mxm.h"
#include "GB_reduce.h"
#include "GB_binop.h"
//------------------------------------------------------------------------------
// GB_iso_mult: c = mult(a,b) or c = mult(b,a)
//------------------------------------------------------------------------------
static void GB_iso_mult // c = mult(a,b) or c=mult(b,a)
(
GB_void *restrict c, // c has type zcode, and size zsize
const GB_void *restrict a, const GB_Type_code acode, const size_t asize,
const GB_void *restrict b, const GB_Type_code bcode, const size_t bsize,
GxB_binary_function fmult,
const bool flipxy,
const GB_Type_code xcode, const size_t xsize,
const GB_Type_code ycode, const size_t ysize,
const GB_Type_code zcode, const size_t zsize
)
{
if (flipxy)
{
// c = mult(b,a)
GB_iso_mult (c, b, bcode, bsize, a, acode, asize, fmult, false,
xcode, xsize, ycode, ysize, zcode, zsize) ;
}
else
{
if (fmult == NULL)
{
// fmult is the implicit FIRST operator from GB_reduce_to_vector
// c = (ztype) a
GB_cast_scalar (c, zcode, a, acode, asize) ;
}
else if (acode == xcode && bcode == ycode)
{
// c = fmult (a,b)
fmult (c, a, b) ;
}
else
{
// x = (xtype) a
GB_void x [GB_VLA(xsize)] ;
GB_cast_scalar (x, xcode, a, acode, asize) ;
// y = (ytype) b
GB_void y [GB_VLA(ysize)] ;
GB_cast_scalar (y, ycode, b, bcode, bsize) ;
// c = fmult (x,y)
fmult (c, x, y) ;
}
}
}
//------------------------------------------------------------------------------
// GB_iso_AxB
//------------------------------------------------------------------------------
bool GB_iso_AxB // C = A*B, return true if C is iso
(
// output
GB_void *restrict c, // output scalar of iso array (not computed if NULL)
// input
GrB_Matrix A, // input matrix
GrB_Matrix B, // input matrix
uint64_t n, // inner dimension of the matrix multiply
GrB_Semiring semiring, // semiring
bool flipxy, // true if z=fmult(b,a), false if z=fmult(a,b)
bool ignore_monoid // rowscale and colscale do not use the monoid
)
{
//--------------------------------------------------------------------------
// get inputs
//--------------------------------------------------------------------------
ASSERT_MATRIX_OK (A, "A for GB_iso_AxB", GB0) ;
ASSERT_MATRIX_OK (B, "B for GB_iso_AxB", GB0) ;
ASSERT_SEMIRING_OK (semiring, "semiring for GB_iso_AxB", GB0) ;
//--------------------------------------------------------------------------
// quick return if multop is positional
//--------------------------------------------------------------------------
GB_Opcode add_binop_code = semiring->add->op->opcode ;
const GrB_BinaryOp multiply = semiring->multiply ;
if (GB_OP_IS_POSITIONAL (multiply))
{
// C is not iso if the multiply op is positional
return (false) ;
}
//--------------------------------------------------------------------------
// get the binary operator and the types of C, A, and B
//--------------------------------------------------------------------------
const GxB_binary_function fmult = multiply->binop_function ;
GB_Opcode mult_binop_code = multiply->opcode ;
ASSERT (GB_IMPLIES (fmult == NULL, mult_binop_code == GB_FIRST_binop_code));
const GrB_Type xtype = multiply->xtype ;
const GrB_Type ytype = multiply->ytype ;
const GrB_Type ztype = multiply->ztype ;
const GB_Type_code xcode = xtype->code ;
const GB_Type_code ycode = ytype->code ;
const GB_Type_code zcode = ztype->code ;
const GB_Type_code acode = A->type->code ;
const GB_Type_code bcode = B->type->code ;
const size_t xsize = xtype->size ;
const size_t ysize = ytype->size ;
const size_t zsize = ztype->size ;
const size_t asize = A->type->size ;
const size_t bsize = B->type->size ;
if (zcode == GB_BOOL_code)
{
// rename a boolean monoid:
// MIN_BOOL and TIMES_BOOL monoids become LAND
// MAX_BOOL and PLUS_BOOL monoids become LOR
add_binop_code = GB_boolean_rename (add_binop_code) ;
}
if (xcode == GB_BOOL_code)
{
// rename a boolean multiply op:
// DIV becomes FIRST, RDIV becomes SECOND; all other renaming has no
// effect on this method.
mult_binop_code = GB_boolean_rename (mult_binop_code) ;
}
// "nice" monoids have the property that reducing a set of iso values to a
// single result doesn't change the result: ANY, LAND, LOR, BAND, BOR, MIN
// and MAX. That is, x == reduce ([x x x x x ... x x x x]) holds for all
// these monoids. The monoids that do not fall into this "nice" category
// are PLUS, TIMES, EQ (LXNOR), LXOR, BXOR, and BXNOR. For row/col scaling,
// all monoids are "nice" since they aren't used.
const bool nice_monoid = ignore_monoid ||
add_binop_code == GB_ANY_binop_code ||
add_binop_code == GB_LAND_binop_code ||
add_binop_code == GB_LOR_binop_code ||
add_binop_code == GB_BAND_binop_code ||
add_binop_code == GB_BOR_binop_code ||
add_binop_code == GB_MAX_binop_code ||
add_binop_code == GB_MIN_binop_code ;
// Nearly all cases where C is iso require a "nice" monoid, with the
// exception of the EQ_PAIR and TIMES_PAIR semirings, which are the same
// as ANY_PAIR semirings.
const bool nice_with_pair = nice_monoid ||
add_binop_code == GB_EQ_binop_code ||
add_binop_code == GB_TIMES_binop_code ;
// the FIRST or ANY multiply ops can both produce a FIRST result
const bool first = (mult_binop_code == GB_ANY_binop_code) ||
(mult_binop_code ==
(flipxy ? GB_SECOND_binop_code : GB_FIRST_binop_code)) ;
// the SECOND or ANY multiply ops can both produce a SECOND result
const bool second = (mult_binop_code == GB_ANY_binop_code) ||
(mult_binop_code ==
(flipxy ? GB_FIRST_binop_code : GB_SECOND_binop_code)) ;
//--------------------------------------------------------------------------
// determine if C is iso
//--------------------------------------------------------------------------
// A and B are treated as if iso if they have 1 entry and are not bitmap
const bool A_iso = A->iso || (GB_nnz (A) == 1 && !GB_IS_BITMAP (A)) ;
const bool B_iso = B->iso || (GB_nnz (B) == 1 && !GB_IS_BITMAP (B)) ;
if (nice_with_pair && mult_binop_code == GB_PAIR_binop_code)
{
//----------------------------------------------------------------------
// C is iso, with c = 1
//----------------------------------------------------------------------
if (c != NULL)
{
GB_cast_one (c, zcode) ;
}
return (true) ;
}
else if (B_iso && nice_monoid && second)
{
//----------------------------------------------------------------------
// C is iso, with c = b
//----------------------------------------------------------------------
if (c != NULL)
{
if (zcode == ycode && bcode == ycode)
{
// c = Bx [0]
memcpy (c, B->x, zsize) ;
}
else
{
// c = (ztype) ((ytype) Bx [0])
GB_void y [GB_VLA(ysize)] ;
GB_cast_scalar (y, ycode, B->x, bcode, bsize) ;
GB_cast_scalar (c, zcode, y, ycode, ysize) ;
}
}
return (true) ;
}
else if (A_iso && nice_monoid && first)
{
//----------------------------------------------------------------------
// C is iso, with c = a
//----------------------------------------------------------------------
if (c != NULL)
{
if (zcode == xcode && acode == xcode)
{
// c = Ax [0]
memcpy (c, A->x, zsize) ;
}
else
{
// c = (ztype) ((xtype) Ax [0])
GB_void x [GB_VLA(xsize)] ;
GB_cast_scalar (x, xcode, A->x, acode, asize) ;
GB_cast_scalar (c, zcode, x, xcode, xsize) ;
}
}
return (true) ;
}
else if (A_iso && B_iso)
{
//----------------------------------------------------------------------
// both A and B are iso
//----------------------------------------------------------------------
GB_void *Ax = (GB_void *) A->x ;
GB_void *Bx = (GB_void *) B->x ;
if (nice_monoid)
{
//------------------------------------------------------------------
// C is iso, with c = fmult(a,b), for any fmult, incl. user-defined
//------------------------------------------------------------------
if (c != NULL)
{
GB_iso_mult (c, Ax, acode, asize, Bx, bcode, bsize,
fmult, flipxy, xcode, xsize, ycode, ysize, zcode, zsize) ;
}
return (true) ;
}
else if (GB_as_if_full (A) && GB_as_if_full (B))
{
//------------------------------------------------------------------
// C = A*B where A and B are both full and iso
//------------------------------------------------------------------
// If A and B are both full and iso, then C is also full and iso,
// for any semiring (including user-defined) except those with a
// positional multiplicative operator. Each entry C(i,j) is the
// reduction of n copies of the single iso scalar t, where t =
// A(i,k)*B(k,j) is iso-valued for any i, j, or k, assuming n is
// the inner dimension of the C=A*B matrix multiply.
if (c != NULL)
{
// t = A(i,k)*B(k,j)
GB_void t [GB_VLA(zsize)] ;
GB_iso_mult (t, Ax, acode, asize, Bx, bcode, bsize,
fmult, flipxy, xcode, xsize, ycode, ysize, zcode, zsize) ;
// reduce n copies of t to the single scalar c, in O(log(n))
GxB_binary_function freduce = semiring->add->op->binop_function;
GB_iso_reduce_worker (c, freduce, t, n, zsize) ;
}
// the total time to compute C=A*B where all matrices are n-by-n
// and full is thus O(log(n)), much smaller than O(n^3) for the
// conventional matrix-multiply algorithm. It would be possible to
// reduce the time still further, since most reductions of n copies
// of t can be done in O(1) time, but the O(log(n)) method works
// for any monoid, including user-defined ones.
return (true) ;
}
}
//--------------------------------------------------------------------------
// otherwise, C is not iso
//--------------------------------------------------------------------------
return (false) ;
}
|