1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
|
//------------------------------------------------------------------------------
// GB_kroner: Kronecker product, C = kron (A,B)
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// C = kron(A,B) where op determines the binary multiplier to use. The type of
// A and B are compatible with the x and y inputs of z=op(x,y), but can be
// different. The type of C is the type of z. C is hypersparse if either A
// or B are hypersparse.
// FUTURE: this would be faster with built-in types and operators.
// FUTURE: at most one thread is used for each vector of C=kron(A,B). The
// matrix C is normally very large, but if both A and B are n-by-1, then C is
// n^2-by-1 and only a single thread is used. A better method for this case
// would construct vectors of C in parallel.
// FUTURE: each vector C(:,k) takes O(nnz(C(:,k))) work, but this is not
// accounted for in the parallel load-balancing.
#define GB_FREE_WORKSPACE \
{ \
GB_Matrix_free (&A2) ; \
GB_Matrix_free (&B2) ; \
}
#define GB_FREE_ALL \
{ \
GB_FREE_WORKSPACE ; \
GB_phybix_free (C) ; \
}
#include "GB_kron.h"
#include "GB_emult.h"
GrB_Info GB_kroner // C = kron (A,B)
(
GrB_Matrix C, // output matrix
const bool C_is_csc, // desired format of C
const GrB_BinaryOp op, // multiply operator
const GrB_Matrix A_in, // input matrix
bool A_is_pattern, // true if values of A are not used
const GrB_Matrix B_in, // input matrix
bool B_is_pattern, // true if values of B are not used
GB_Context Context
)
{
//--------------------------------------------------------------------------
// check inputs
//--------------------------------------------------------------------------
GrB_Info info ;
ASSERT (C != NULL && (C->static_header || GBNSTATIC)) ;
struct GB_Matrix_opaque A2_header, B2_header ;
GrB_Matrix A2 = NULL, B2 = NULL ;
ASSERT_MATRIX_OK (A_in, "A_in for kron (A,B)", GB0) ;
ASSERT_MATRIX_OK (B_in, "B_in for kron (A,B)", GB0) ;
ASSERT_BINARYOP_OK (op, "op for kron (A,B)", GB0) ;
//--------------------------------------------------------------------------
// finish any pending work
//--------------------------------------------------------------------------
GB_MATRIX_WAIT (A_in) ;
GB_MATRIX_WAIT (B_in) ;
//--------------------------------------------------------------------------
// bitmap case: create sparse copies of A and B if they are bitmap
//--------------------------------------------------------------------------
GrB_Matrix A = A_in ;
if (GB_IS_BITMAP (A))
{
GBURBLE ("A:") ;
// set A2->iso = A->iso OK: no need for burble
GB_CLEAR_STATIC_HEADER (A2, &A2_header) ;
GB_OK (GB_dup_worker (&A2, A->iso, A, true, NULL, Context)) ;
ASSERT_MATRIX_OK (A2, "dup A2 for kron (A,B)", GB0) ;
GB_OK (GB_convert_bitmap_to_sparse (A2, Context)) ;
ASSERT_MATRIX_OK (A2, "to sparse, A2 for kron (A,B)", GB0) ;
A = A2 ;
}
GrB_Matrix B = B_in ;
if (GB_IS_BITMAP (B))
{
GBURBLE ("B:") ;
// set B2->iso = B->iso OK: no need for burble
GB_CLEAR_STATIC_HEADER (B2, &B2_header) ;
GB_OK (GB_dup_worker (&B2, B->iso, B, true, NULL, Context)) ;
ASSERT_MATRIX_OK (B2, "dup B2 for kron (A,B)", GB0) ;
GB_OK (GB_convert_bitmap_to_sparse (B2, Context)) ;
ASSERT_MATRIX_OK (B2, "to sparse, B2 for kron (A,B)", GB0) ;
B = B2 ;
}
//--------------------------------------------------------------------------
// get inputs
//--------------------------------------------------------------------------
const int64_t *restrict Ap = A->p ;
const int64_t *restrict Ah = A->h ;
const int64_t *restrict Ai = A->i ;
const GB_void *restrict Ax = A_is_pattern ? NULL : ((GB_void *) A->x) ;
const int64_t asize = A->type->size ;
const int64_t avlen = A->vlen ;
const int64_t avdim = A->vdim ;
int64_t anvec = A->nvec ;
int64_t anz = GB_nnz (A) ;
const int64_t *restrict Bp = B->p ;
const int64_t *restrict Bh = B->h ;
const int64_t *restrict Bi = B->i ;
const GB_void *restrict Bx = B_is_pattern ? NULL : ((GB_void *) B->x) ;
const int64_t bsize = B->type->size ;
const int64_t bvlen = B->vlen ;
const int64_t bvdim = B->vdim ;
int64_t bnvec = B->nvec ;
int64_t bnz = GB_nnz (B) ;
//--------------------------------------------------------------------------
// determine the number of threads to use
//--------------------------------------------------------------------------
double work = ((double) anz) * ((double) bnz)
+ (((double) anvec) * ((double) bnvec)) ;
GB_GET_NTHREADS_MAX (nthreads_max, chunk, Context) ;
int nthreads = GB_nthreads (work, chunk, nthreads_max) ;
//--------------------------------------------------------------------------
// check if C is iso and compute its iso value if it is
//--------------------------------------------------------------------------
GrB_Type ctype = op->ztype ;
const size_t csize = ctype->size ;
GB_void cscalar [GB_VLA(csize)] ;
bool C_iso = GB_iso_emult (cscalar, ctype, A, B, op) ;
//--------------------------------------------------------------------------
// allocate the output matrix C
//--------------------------------------------------------------------------
// C has the same type as z for the multiply operator, z=op(x,y)
GrB_Index cvlen, cvdim, cnzmax, cnvec ;
bool ok = GB_int64_multiply (&cvlen, avlen, bvlen) ;
ok = ok & GB_int64_multiply (&cvdim, avdim, bvdim) ;
ok = ok & GB_int64_multiply (&cnzmax, anz, bnz) ;
ok = ok & GB_int64_multiply (&cnvec, anvec, bnvec) ;
ASSERT (ok) ;
if (C_iso)
{
// the values of A and B are no longer needed if C is iso
GBURBLE ("(iso kron) ") ;
A_is_pattern = true ;
B_is_pattern = true ;
}
// C is hypersparse if either A or B are hypersparse. It is never bitmap.
bool C_is_hyper = (cvdim > 1) && (Ah != NULL || Bh != NULL) ;
bool C_is_full = GB_as_if_full (A) && GB_as_if_full (B) ;
int sparsity = C_is_full ? GxB_FULL :
((C_is_hyper) ? GxB_HYPERSPARSE : GxB_SPARSE) ;
// set C->iso = C_iso OK
GB_OK (GB_new_bix (&C, // full, sparse, or hyper; existing header
ctype, (int64_t) cvlen, (int64_t) cvdim, GB_Ap_malloc, C_is_csc,
sparsity, true, B->hyper_switch, cnvec, cnzmax, true, C_iso, Context)) ;
//--------------------------------------------------------------------------
// get C and the operator
//--------------------------------------------------------------------------
int64_t *restrict Cp = C->p ;
int64_t *restrict Ch = C->h ;
int64_t *restrict Ci = C->i ;
GB_void *restrict Cx = (GB_void *) C->x ;
int64_t *restrict Cx_int64 = NULL ;
int32_t *restrict Cx_int32 = NULL ;
GxB_binary_function fmult = op->binop_function ;
GB_Opcode opcode = op->opcode ;
bool op_is_positional = GB_OPCODE_IS_POSITIONAL (opcode) ;
GB_cast_function cast_A = NULL, cast_B = NULL ;
if (!A_is_pattern)
{
cast_A = GB_cast_factory (op->xtype->code, A->type->code) ;
}
if (!B_is_pattern)
{
cast_B = GB_cast_factory (op->ytype->code, B->type->code) ;
}
int64_t offset = 0 ;
if (op_is_positional)
{
offset = GB_positional_offset (opcode, NULL) ;
Cx_int64 = (int64_t *) Cx ;
Cx_int32 = (int32_t *) Cx ;
}
bool is64 = (ctype == GrB_INT64) ;
//--------------------------------------------------------------------------
// compute the column counts of C, and C->h if C is hypersparse
//--------------------------------------------------------------------------
int64_t kC ;
if (!C_is_full)
{
// C is sparse or hypersparse
#pragma omp parallel for num_threads(nthreads) schedule(guided)
for (kC = 0 ; kC < cnvec ; kC++)
{
const int64_t kA = kC / bnvec ;
const int64_t kB = kC % bnvec ;
// get A(:,jA), the (kA)th vector of A
const int64_t jA = GBH (Ah, kA) ;
const int64_t aknz = (Ap == NULL) ? avlen : (Ap [kA+1] - Ap [kA]) ;
// get B(:,jB), the (kB)th vector of B
const int64_t jB = GBH (Bh, kB) ;
const int64_t bknz = (Bp == NULL) ? bvlen : (Bp [kB+1] - Bp [kB]) ;
// determine # entries in C(:,jC), the (kC)th vector of C
// int64_t kC = kA * bnvec + kB ;
Cp [kC] = aknz * bknz ;
if (C_is_hyper)
{
Ch [kC] = jA * bvdim + jB ;
}
}
GB_cumsum (Cp, cnvec, &(C->nvec_nonempty), nthreads, Context) ;
C->nvals = Cp [cnvec] ;
if (C_is_hyper) C->nvec = cnvec ;
}
C->magic = GB_MAGIC ;
//--------------------------------------------------------------------------
// C = kron (A,B) where C is iso and full
//--------------------------------------------------------------------------
if (C_iso)
{
// Cx [0] = cscalar = op (A,B)
memcpy (C->x, cscalar, csize) ;
if (C_is_full)
{
// no more work to do if C is iso and full
ASSERT_MATRIX_OK (C, "C=kron(A,B), iso full", GB0) ;
GB_FREE_WORKSPACE ;
return (GrB_SUCCESS) ;
}
}
//--------------------------------------------------------------------------
// C = kron (A,B)
//--------------------------------------------------------------------------
const bool A_iso = A->iso ;
const bool B_iso = B->iso ;
#pragma omp parallel for num_threads(nthreads) schedule(guided)
for (kC = 0 ; kC < cnvec ; kC++)
{
int64_t kA = kC / bnvec ;
int64_t kB = kC % bnvec ;
// get B(:,jB), the (kB)th vector of B
int64_t jB = GBH (Bh, kB) ;
int64_t pB_start = GBP (Bp, kB, bvlen) ;
int64_t pB_end = GBP (Bp, kB+1, bvlen) ;
int64_t bknz = pB_start - pB_end ;
if (bknz == 0) continue ;
GB_void bwork [GB_VLA(bsize)] ;
if (!B_is_pattern && B_iso)
{
cast_B (bwork, Bx, bsize) ;
}
// get C(:,jC), the (kC)th vector of C
// int64_t kC = kA * bnvec + kB ;
int64_t pC = GBP (Cp, kC, cvlen) ;
// get A(:,jA), the (kA)th vector of A
int64_t jA = GBH (Ah, kA) ;
int64_t pA_start = GBP (Ap, kA, avlen) ;
int64_t pA_end = GBP (Ap, kA+1, avlen) ;
GB_void awork [GB_VLA(asize)] ;
if (!A_is_pattern && A_iso)
{
cast_A (awork, Ax, asize) ;
}
for (int64_t pA = pA_start ; pA < pA_end ; pA++)
{
// awork = A(iA,jA), typecasted to op->xtype
int64_t iA = GBI (Ai, pA, avlen) ;
int64_t iAblock = iA * bvlen ;
if (!A_is_pattern && !A_iso)
{
cast_A (awork, Ax + (pA*asize), asize) ;
}
for (int64_t pB = pB_start ; pB < pB_end ; pB++)
{
// bwork = B(iB,jB), typecasted to op->ytype
int64_t iB = GBI (Bi, pB, bvlen) ;
if (!B_is_pattern && !B_iso)
{
cast_B (bwork, Bx +(pB*bsize), bsize) ;
}
// C(iC,jC) = A(iA,jA) * B(iB,jB)
if (!C_is_full)
{
int64_t iC = iAblock + iB ;
Ci [pC] = iC ;
}
if (op_is_positional)
{
// positional binary operator
switch (opcode)
{
case GB_FIRSTI_binop_code :
// z = first_i(A(iA,jA),y) == iA
case GB_FIRSTI1_binop_code :
// z = first_i1(A(iA,jA),y) == iA+1
if (is64)
{
Cx_int64 [pC] = iA + offset ;
}
else
{
Cx_int32 [pC] = (int32_t) (iA + offset) ;
}
break ;
case GB_FIRSTJ_binop_code :
// z = first_j(A(iA,jA),y) == jA
case GB_FIRSTJ1_binop_code :
// z = first_j1(A(iA,jA),y) == jA+1
if (is64)
{
Cx_int64 [pC] = jA + offset ;
}
else
{
Cx_int32 [pC] = (int32_t) (jA + offset) ;
}
break ;
case GB_SECONDI_binop_code :
// z = second_i(x,B(iB,jB)) == iB
case GB_SECONDI1_binop_code :
// z = second_i1(x,B(iB,jB)) == iB+1
if (is64)
{
Cx_int64 [pC] = iB + offset ;
}
else
{
Cx_int32 [pC] = (int32_t) (iB + offset) ;
}
break ;
case GB_SECONDJ_binop_code :
// z = second_j(x,B(iB,jB)) == jB
case GB_SECONDJ1_binop_code :
// z = second_j1(x,B(iB,jB)) == jB+1
if (is64)
{
Cx_int64 [pC] = jB + offset ;
}
else
{
Cx_int32 [pC] = (int32_t) (jB + offset) ;
}
break ;
default: ;
}
}
else if (!C_iso)
{
// standard binary operator
fmult (Cx +(pC*csize), awork, bwork) ;
}
pC++ ;
}
}
}
//--------------------------------------------------------------------------
// remove empty vectors from C, if hypersparse
//--------------------------------------------------------------------------
GB_OK (GB_hypermatrix_prune (C, Context)) ;
//--------------------------------------------------------------------------
// return result
//--------------------------------------------------------------------------
ASSERT_MATRIX_OK (C, "C=kron(A,B)", GB0) ;
GB_FREE_WORKSPACE ;
return (GrB_SUCCESS) ;
}
|