1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
|
//------------------------------------------------------------------------------
// GB_macrofy_binop: construct the macro and defn for a binary operator
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2021, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
#include "GB.h"
#include "GB_stringify.h"
void GB_macrofy_binop
(
FILE *fp,
// input:
const char *macro_name,
bool flipxy, // if true: op is f(y,x), multipicative only
bool is_monoid, // if true: additive operator for monoid
int ecode,
GrB_BinaryOp op, // may be NULL (for GB_wait)
bool skip_defn
)
{
if (ecode == 0)
{
//----------------------------------------------------------------------
// user-defined operator
//----------------------------------------------------------------------
if (is_monoid)
{
// additive operator: no i,k,j parameters
fprintf (fp, "#define %s(z,x,y) %s (&(z), &(x), &(y))\n",
macro_name, op->name) ;
}
else if (flipxy)
{
// flipped multiplicative or ewise operator
// note: no positional operands for user-defined ops (yet)
fprintf (fp, "#define %s(z,y,x,j,k,i) %s (&(z), &(x), &(y))\n",
macro_name, op->name) ;
}
else
{
// unflipped multiplicative or ewise operator
fprintf (fp, "#define %s(z,x,y,i,k,j) %s (&(z), &(x), &(y))\n",
macro_name, op->name) ;
}
if (!skip_defn && op->defn != NULL)
{
fprintf (fp, "%s\n", op->defn) ;
}
}
else
{
//----------------------------------------------------------------------
// built-in operator
//----------------------------------------------------------------------
const char *f ;
switch (ecode)
{
//------------------------------------------------------------------
// built-in ops, can be used in a monoid
//------------------------------------------------------------------
// first
case 1 : f = "z = (x)" ; break ;
// any, second
case 2 : f = "z = (y)" ; break ;
// min
case 3 : f = "z = fminf (x,y)" ; break ;
case 4 : f = "z = fmin (x,y)" ; break ;
case 5 : f = "z = GB_IMIN (x,y)" ; break ;
// max
case 6 : f = "z = fmaxf (x,y)" ; break ;
case 7 : f = "z = fmax (x,y)" ; break ;
case 8 : f = "z = GB_IMAX (x,y)" ; break ;
// plus
case 9 : f = "z = GB_FC32_add (x,y)" ; break ;
case 10 : f = "z = GB_FC64_add (x,y)" ; break ;
case 11 : f = "z = (x) + (y)" ; break ;
// times
case 12 : f = "z = GB_FC32_mul (x,y)" ; break ;
case 13 : f = "z = GB_FC64_mul (x,y)" ; break ;
case 14 : f = "z = (x) * (y)" ; break ;
// eq, iseq, lxnor
case 15 : f = "z = ((x) == (y))" ; break ;
// ne, isne, lxor
case 16 : f = "z = ((x) != (y))" ; break ;
// lor
case 17 : f = "z = ((x) || (y))" ; break ;
// land
case 18 : f = "z = ((x) && (y))" ; break ;
// bor
case 19 : f = "z = ((x) | (y))" ; break ;
// band
case 20 : f = "z = ((x) & (y))" ; break ;
// bxor
case 21 : f = "z = ((x) ^ (y))" ; break ;
// bxnor
case 22 : f = "z = (~((x) ^ (y)))" ; break ;
// 23 to 31 are unused, but reserved for future monoids
//------------------------------------------------------------------
// built-in ops, cannot be used in a monoid
//------------------------------------------------------------------
// eq for complex
case 32 : f = "z = GB_FC32_eq (x,y)" ; break ;
case 33 : f = "z = GB_FC64_eq (x,y)" ; break ;
// iseq for complex
case 34 : f = "z = GB_FC32_iseq (x,y)" ; break ;
case 35 : f = "z = GB_FC64_iseq (x,y)" ; break ;
// ne for complex
case 36 : f = "z = GB_FC32_ne (x,y)" ; break ;
case 37 : f = "z = GB_FC64_ne (x,y)" ; break ;
// isne for complex
case 38 : f = "z = GB_FC32_isne (x,y)" ; break ;
case 39 : f = "z = GB_FC64_isne (x,y)" ; break ;
// lor for non-boolean
case 40 : f = "z = (((x)!=0) || ((y)!=0))" ; break ;
// land for non-boolean
case 41 : f = "z = (((x)!=0) && ((y)!=0))" ; break ;
// lxor for non-boolean
case 42 : f = "z = (((x)!=0) != ((y)!=0))" ; break ;
// minus
case 43 : f = "z = GB_FC32_minus (x,y)" ; break ;
case 44 : f = "z = GB_FC64_minus (x,y)" ; break ;
case 45 : f = "z = (x) - (y)" ; break ;
// rminus
case 46 : f = "z = GB_FC32_minus (y,x)" ; break ;
case 47 : f = "z = GB_FC64_minus (y,x)" ; break ;
case 48 : f = "z = (y) - (x)" ; break ;
// div:
case 49 : f = "z = GB_idiv_int8 (x,y)" ; break ;
case 50 : f = "z = GB_idiv_int16 (x,y)" ; break ;
case 51 : f = "z = GB_idiv_int32 (x,y)" ; break ;
case 52 : f = "z = GB_idiv_int64 (x,y)" ; break ;
case 53 : f = "z = GB_idiv_uint8 (x,y)" ; break ;
case 54 : f = "z = GB_idiv_uint16 (x,y)" ; break ;
case 55 : f = "z = GB_idiv_uint32 (x,y)" ; break ;
case 56 : f = "z = GB_idiv_uint64 (x,y)" ; break ;
case 57 : f = "z = GB_FC32_div (x,y)" ; break ;
case 58 : f = "z = GB_FC64_div (x,y)" ; break ;
case 59 : f = "z = (x) / (y)" ; break ;
// rdiv
case 60 : f = "z = GB_idiv_int8 (y,x)" ; break ;
case 61 : f = "z = GB_idiv_int16 (y,x)" ; break ;
case 62 : f = "z = GB_idiv_int32 (y,x)" ; break ;
case 63 : f = "z = GB_idiv_int64 (y,x)" ; break ;
case 64 : f = "z = GB_idiv_uint8 (y,x)" ; break ;
case 65 : f = "z = GB_idiv_uint16 (y,x)" ; break ;
case 66 : f = "z = GB_idiv_uint32 (y,x)" ; break ;
case 67 : f = "z = GB_idiv_uint64 (y,x)" ; break ;
case 68 : f = "z = GB_FC32_div (x,y)" ; break ;
case 69 : f = "z = GB_FC64_div (x,y)" ; break ;
case 70 : f = "z = (y) / (x)" ; break ;
// gt, isgt
case 71 : f = "z = ((x) > (y))" ; break ;
// lt, islt
case 72 : f = "z = ((x) < (y))" ; break ;
// ge, isget
case 73 : f = "z = ((x) >= (y))" ; break ;
// le, isle
case 74 : f = "z = ((x) <= (y))" ; break ;
// bget
case 75 : f = "z = GB_BITGET (x,y,int8_t, 8)" ; break ;
case 76 : f = "z = GB_BITGET (x,y,int16_t,16)" ; break ;
case 77 : f = "z = GB_BITGET (x,y,int32_t,32)" ; break ;
case 78 : f = "z = GB_BITGET (x,y,int64_t,64)" ; break ;
case 79 : f = "z = GB_BITGET (x,y,uint8_t,8)" ; break ;
case 80 : f = "z = GB_BITGET (x,y,uint16_t,16)" ; break ;
case 81 : f = "z = GB_BITGET (x,y,uint32_t,32)" ; break ;
case 82 : f = "z = GB_BITGET (x,y,uint64_t,64)" ; break ;
// bset
case 83 : f = "z = GB_BITSET (x,y,int8_t, 8)" ; break ;
case 84 : f = "z = GB_BITSET (x,y,int16_t,16)" ; break ;
case 85 : f = "z = GB_BITSET (x,y,int32_t,32)" ; break ;
case 86 : f = "z = GB_BITSET (x,y,int64_t,64)" ; break ;
case 87 : f = "z = GB_BITSET (x,y,uint8_t,8)" ; break ;
case 88 : f = "z = GB_BITSET (x,y,uint16_t,16)" ; break ;
case 89 : f = "z = GB_BITSET (x,y,uint32_t,32)" ; break ;
case 90 : f = "z = GB_BITSET (x,y,uint64_t,64)" ; break ;
// bclr
case 91 : f = "z = GB_BITCLR (x,y,int8_t, 8)" ; break ;
case 92 : f = "z = GB_BITCLR (x,y,int16_t,16)" ; break ;
case 93 : f = "z = GB_BITCLR (x,y,int32_t,32)" ; break ;
case 94 : f = "z = GB_BITCLR (x,y,int64_t,64)" ; break ;
case 95 : f = "z = GB_BITCLR (x,y,uint8_t,8)" ; break ;
case 96 : f = "z = GB_BITCLR (x,y,uint16_t,16)" ; break ;
case 97 : f = "z = GB_BITCLR (x,y,uint32_t,32)" ; break ;
case 98 : f = "z = GB_BITCLR (x,y,uint64_t,64)" ; break ;
// bshift
case 99 : f = "z = GB_bitshift_int8 (x,y)" ; break ;
case 100 : f = "z = GB_bitshift_int16 (x,y)" ; break ;
case 101 : f = "z = GB_bitshift_int32 (x,y)" ; break ;
case 102 : f = "z = GB_bitshift_int64 (x,y)" ; break ;
case 103 : f = "z = GB_bitshift_uint8 (x,y)" ; break ;
case 104 : f = "z = GB_bitshift_uint16 (x,y)" ; break ;
case 105 : f = "z = GB_bitshift_uint32 (x,y)" ; break ;
case 106 : f = "z = GB_bitshift_uint64 (x,y)" ; break ;
// pow
case 107 : f = "z = GB_pow_int8 (x, y)" ; break ;
case 108 : f = "z = GB_pow_int16 (x, y)" ; break ;
case 109 : f = "z = GB_pow_int32 (x, y)" ; break ;
case 110 : f = "z = GB_pow_int64 (x, y)" ; break ;
case 111 : f = "z = GB_pow_uint8 (x, y)" ; break ;
case 112 : f = "z = GB_pow_uint16 (x, y)" ; break ;
case 113 : f = "z = GB_pow_uint32 (x, y)" ; break ;
case 114 : f = "z = GB_pow_uint64 (x, y)" ; break ;
case 115 : f = "z = GB_powf (x, y)" ; break ;
case 116 : f = "z = GB_pow (x, y)" ; break ;
case 117 : f = "z = GB_cpowf (x, y)" ; break ;
case 118 : f = "z = GB_cpow (x, y)" ; break ;
// atan2
case 119 : f = "z = atan2f (x, y)" ; break ;
case 120 : f = "z = atan2 (x, y)" ; break ;
// hypot
case 121 : f = "z = hypotf (x, y)" ; break ;
case 122 : f = "z = hypot (x, y)" ; break ;
// fmod
case 123 : f = "z = fmodf (x, y)" ; break ;
case 124 : f = "z = fmod (x, y)" ; break ;
// remainder
case 125 : f = "z = remainderf (x, y)" ; break ;
case 126 : f = "z = remainder (x, y)" ; break ;
// copysign
case 127 : f = "z = copysignf (x, y)" ; break ;
case 128 : f = "z = copysign (x, y)" ; break ;
// ldexp
case 129 : f = "z = ldexpf (x, y)" ; break ;
case 130 : f = "z = ldexp (x, y)" ; break ;
// cmplex
case 131 : f = "z = GxB_CMPLXF (x, y)" ; break ;
case 132 : f = "z = GxB_CMPLX (x, y)" ; break ;
// pair
case 133 : f = "z = 1" ; break ;
//------------------------------------------------------------------
// positional ops
//------------------------------------------------------------------
// in a semiring: cij += aik * bkj
// firsti is i, firstj is k, secondi k, secondj is j
// in an ewise operation: cij = aij + bij
// firsti is i, firstj is j, secondi i, secondj is j
case 134 : f = "z = (i)" ; break ;
case 135 : f = "z = (k)" ; break ;
case 136 : f = "z = (j)" ; break ;
case 137 : f = "z = (i) + 1" ; break ;
case 138 : f = "z = (k) + 1" ; break ;
case 139 : f = "z = (j) + 1" ; break ;
//------------------------------------------------------------------
// no-op for GB_wait (an implicit 2nd operator)
//------------------------------------------------------------------
case 140 : f = "z = y" ; break ;
default : f = "" ; ; break ;
}
//----------------------------------------------------------------------
// create the macro
//----------------------------------------------------------------------
if (is_monoid)
{
// additive operator: no i,k,j parameters
fprintf (fp, "#define %s(z,x,y) %s\n", macro_name, f) ;
}
else if (flipxy)
{
// flipped multiplicative or ewise operator
fprintf (fp, "#define %s(z,y,x,j,k,i) %s\n", macro_name, f) ;
}
else
{
// unflipped multiplicative or ewise operator
fprintf (fp, "#define %s(z,x,y,i,k,j) %s\n", macro_name, f) ;
}
}
}
|