1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
|
//------------------------------------------------------------------------------
// GB_math.h: definitions for complex types, and mathematical operators
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
#ifndef GB_MATH_H
#define GB_MATH_H
//------------------------------------------------------------------------------
// CUDA vs CPU math functions
//------------------------------------------------------------------------------
#ifdef GB_CUDA_KERNEL
// fixme for CUDA: this could likely be: "__device__ static inline"
#define GB_MATH_KERNEL __device__ inline
#else
#define GB_MATH_KERNEL inline
#endif
//------------------------------------------------------------------------------
// complex macros
//------------------------------------------------------------------------------
#if GB_COMPILER_MSC
//--------------------------------------------------------------------------
// Microsoft Visual Studio compiler with its own complex type
//--------------------------------------------------------------------------
// complex-complex multiply: z = x*y where both x and y are complex
#define GB_FC32_mul(x,y) (_FCmulcc (x, y))
#define GB_FC64_mul(x,y) ( _Cmulcc (x, y))
// complex-real multiply: z = x*y where x is complex and y is real
#define GB_FC32_rmul(x,y) (_FCmulcr (x, y))
#define GB_FC64_rmul(x,y) ( _Cmulcr (x, y))
// complex-complex addition: z = x+y where both x and y are complex
#define GB_FC32_add(x,y) \
GxB_CMPLXF (crealf (x) + crealf (y), cimagf (x) + cimagf (y))
#define GB_FC64_add(x,y) \
GxB_CMPLX (creal (x) + creal (y), cimag (x) + cimag (y))
// complex-complex subtraction: z = x-y where both x and y are complex
#define GB_FC32_minus(x,y) \
GxB_CMPLXF (crealf (x) - crealf (y), cimagf (x) - cimagf (y))
#define GB_FC64_minus(x,y) \
GxB_CMPLX (creal (x) - creal (y), cimag (x) - cimag (y))
// complex negation: z = -x
#define GB_FC32_ainv(x) GxB_CMPLXF (-crealf (x), -cimagf (x))
#define GB_FC64_ainv(x) GxB_CMPLX (-creal (x), -cimag (x))
#else
//--------------------------------------------------------------------------
// native complex type support
//--------------------------------------------------------------------------
// complex-complex multiply: z = x*y where both x and y are complex
#define GB_FC32_mul(x,y) ((x) * (y))
#define GB_FC64_mul(x,y) ((x) * (y))
// complex-real multiply: z = x*y where x is complex and y is real
#define GB_FC32_rmul(x,y) ((x) * (y))
#define GB_FC64_rmul(x,y) ((x) * (y))
// complex-complex addition: z = x+y where both x and y are complex
#define GB_FC32_add(x,y) ((x) + (y))
#define GB_FC64_add(x,y) ((x) + (y))
// complex-complex subtraction: z = x-y where both x and y are complex
#define GB_FC32_minus(x,y) ((x) - (y))
#define GB_FC64_minus(x,y) ((x) - (y))
// complex negation
#define GB_FC32_ainv(x) (-(x))
#define GB_FC64_ainv(x) (-(x))
#endif
// complex inverse: z = 1/x
#define GB_FC32_minv(x) GB_FC32_div (GxB_CMPLXF (1,0), x)
#define GB_FC64_minv(x) GB_FC64_div (GxB_CMPLX (1,0), x)
// complex comparators
#define GB_FC32_eq(x,y) ((crealf(x) == crealf(y)) && (cimagf(x) == cimagf(y)))
#define GB_FC64_eq(x,y) ((creal (x) == creal (y)) && (cimag (x) == cimag (y)))
#define GB_FC32_ne(x,y) ((crealf(x) != crealf(y)) || (cimagf(x) != cimagf(y)))
#define GB_FC64_ne(x,y) ((creal (x) != creal (y)) || (cimag (x) != cimag (y)))
#define GB_FC32_iseq(x,y) GxB_CMPLXF ((float) GB_FC32_eq (x,y), 0)
#define GB_FC64_iseq(x,y) GxB_CMPLX ((double) GB_FC64_eq (x,y), 0)
#define GB_FC32_isne(x,y) GxB_CMPLXF ((float) GB_FC32_ne (x,y), 0)
#define GB_FC64_isne(x,y) GxB_CMPLX ((double) GB_FC64_ne (x,y), 0)
#define GB_FC32_eq0(x) ((crealf(x) == 0) && (cimagf(x) == 0))
#define GB_FC64_eq0(x) ((creal (x) == 0) && (cimag (x) == 0))
#define GB_FC32_ne0(x) ((crealf(x) != 0) || (cimagf(x) != 0))
#define GB_FC64_ne0(x) ((creal (x) != 0) || (cimag (x) != 0))
//------------------------------------------------------------------------------
// min, max, and NaN handling
//------------------------------------------------------------------------------
// For floating-point computations, SuiteSparse:GraphBLAS relies on the IEEE
// 754 standard for the basic operations (+ - / *). Comparator also
// work as they should; any compare with NaN is always false, even
// eq(NaN,NaN) is false. This follows the IEEE 754 standard.
// For integer MIN and MAX, SuiteSparse:GraphBLAS relies on one compator:
// z = min(x,y) = (x < y) ? x : y
// z = max(x,y) = (x > y) ? x : y
// However, this is not suitable for floating-point x and y. Compares with
// NaN always return false, so if either x or y are NaN, then z = y, for both
// min(x,y) and max(x,y).
// The ANSI C11 fmin, fminf, fmax, and fmaxf functions have the 'omitnan'
// behavior. These are used in SuiteSparse:GraphBLAS v2.3.0 and later.
// for integers only:
#define GB_IABS(x) (((x) >= 0) ? (x) : (-(x)))
// suitable for integers, and non-NaN floating point:
#include "GB_imin.h"
// ceiling of a/b for two integers a and b
#include "GB_iceil.h"
//------------------------------------------------------------------------------
// division by zero
//------------------------------------------------------------------------------
// Integer division is done carefully so that GraphBLAS does not terminate the
// user's application on divide-by-zero. To compute x/0: if x is zero, the
// result is zero (like NaN). if x is negative, the result is the negative
// integer with biggest magnitude (like -infinity). if x is positive, the
// result is the biggest positive integer (like +infinity).
// For places affected by this decision in the code do:
// grep "integer division"
// Signed and unsigned integer division, z = x/y. The bits parameter can be 8,
// 16, 32, or 64.
#define GB_INT_MIN(bits) INT ## bits ## _MIN
#define GB_INT_MAX(bits) INT ## bits ## _MAX
#define GB_UINT_MAX(bits) UINT ## bits ## _MAX
// x/y when x and y are signed integers
#define GB_IDIV_SIGNED(x,y,bits) \
( \
((y) == -1) ? \
( \
/* INT32_MIN/(-1) causes floating point exception; avoid it */ \
-(x) \
) \
: \
( \
((y) == 0) ? \
( \
/* x/0 */ \
((x) == 0) ? \
( \
/* zero divided by zero gives 'Nan' */ \
0 \
) \
: \
( \
/* x/0 and x is nonzero */ \
((x) < 0) ? \
( \
/* x is negative: x/0 gives '-Inf' */ \
GB_INT_MIN (bits) \
) \
: \
( \
/* x is positive: x/0 gives '+Inf' */ \
GB_INT_MAX (bits) \
) \
) \
) \
: \
( \
/* normal case for signed integer division */ \
(x) / (y) \
) \
) \
)
GB_MATH_KERNEL int8_t GB_idiv_int8 (int8_t x, int8_t y)
{
return (GB_IDIV_SIGNED (x, y, 8)) ;
}
GB_MATH_KERNEL int16_t GB_idiv_int16 (int16_t x, int16_t y)
{
return (GB_IDIV_SIGNED (x, y, 16)) ;
}
GB_MATH_KERNEL int32_t GB_idiv_int32 (int32_t x, int32_t y)
{
return (GB_IDIV_SIGNED (x, y, 32)) ;
}
GB_MATH_KERNEL int64_t GB_idiv_int64 (int64_t x, int64_t y)
{
return (GB_IDIV_SIGNED (x, y, 64)) ;
}
// x/y when x and y are unsigned integers
#define GB_IDIV_UNSIGNED(x,y,bits) \
( \
((y) == 0) ? \
( \
/* x/0 */ \
((x) == 0) ? \
( \
/* zero divided by zero gives 'Nan' */ \
0 \
) \
: \
( \
/* x is positive: x/0 gives '+Inf' */ \
GB_UINT_MAX (bits) \
) \
) \
: \
( \
/* normal case for unsigned integer division */ \
(x) / (y) \
) \
)
GB_MATH_KERNEL uint8_t GB_idiv_uint8 (uint8_t x, uint8_t y)
{
return (GB_IDIV_UNSIGNED (x, y, 8)) ;
}
GB_MATH_KERNEL uint16_t GB_idiv_uint16 (uint16_t x, uint16_t y)
{
return (GB_IDIV_UNSIGNED (x, y, 16)) ;
}
GB_MATH_KERNEL uint32_t GB_idiv_uint32 (uint32_t x, uint32_t y)
{
return (GB_IDIV_UNSIGNED (x, y, 32)) ;
}
GB_MATH_KERNEL uint64_t GB_idiv_uint64 (uint64_t x, uint64_t y)
{
return (GB_IDIV_UNSIGNED (x, y, 64)) ;
}
// 1/y when y is a signed integer
#define GB_IMINV_SIGNED(y,bits) \
( \
((y) == -1) ? \
( \
-1 \
) \
: \
( \
((y) == 0) ? \
( \
GB_INT_MAX (bits) \
) \
: \
( \
((y) == 1) ? \
( \
1 \
) \
: \
( \
0 \
) \
) \
) \
)
// 1/y when y is an unsigned integer
#define GB_IMINV_UNSIGNED(y,bits) \
( \
((y) == 0) ? \
( \
GB_UINT_MAX (bits) \
) \
: \
( \
((y) == 1) ? \
( \
1 \
) \
: \
( \
0 \
) \
) \
) \
// GraphBLAS includes a built-in GrB_DIV_BOOL operator, so boolean division
// must be defined. ANSI C11 does not provide a definition either, and
// dividing by zero (boolean false) will typically terminate an application.
// In this GraphBLAS implementation, boolean division is treated as if it were
// int1, where 1/1 = 1, 0/1 = 0, 0/0 = integer NaN = 0, 1/0 = +infinity = 1.
// Thus z=x/y is z=x. This is arbitrary, but it allows all operators to work
// on all types without causing run time exceptions. It also means that
// GrB_DIV(x,y) is the same as GrB_FIRST(x,y) for boolean x and y. See for
// example GB_boolean_rename and Template/GB_ops_template.c. Similarly,
// GrB_MINV_BOOL, which is 1/x, is simply 'true' for all x.
//------------------------------------------------------------------------------
// complex division
//------------------------------------------------------------------------------
// z = x/y where z, x, and y are double complex. The real and imaginary parts
// are passed as separate arguments to this routine. The NaN case is ignored
// for the double relop yr >= yi. Returns 1 if the denominator is zero, 0
// otherwise.
//
// This uses ACM Algo 116, by R. L. Smith, 1962, which tries to avoid underflow
// and overflow.
//
// z can be aliased with x or y.
//
// Note that this function has the same signature as SuiteSparse_divcomplex.
GB_MATH_KERNEL int GB_divcomplex
(
double xr, double xi, // real and imaginary parts of x
double yr, double yi, // real and imaginary parts of y
double *zr, double *zi // real and imaginary parts of z
)
{
double tr, ti, r, den ;
int yr_class = fpclassify (yr) ;
int yi_class = fpclassify (yi) ;
if (yi_class == FP_ZERO)
{
den = yr ;
if (xi == 0)
{
tr = xr / den ;
ti = 0 ;
}
else if (xr == 0)
{
tr = 0 ;
ti = xi / den ;
}
else
{
tr = xr / den ;
ti = xi / den ;
}
}
else if (yr_class == FP_ZERO)
{
den = yi ;
if (xr == 0)
{
tr = xi / den ;
ti = 0 ;
}
else if (xi == 0)
{
tr = 0 ;
ti = -xr / den ;
}
else
{
tr = xi / den ;
ti = -xr / den ;
}
}
else if (yi_class == FP_INFINITE && yr_class == FP_INFINITE)
{
r = (signbit (yr) == signbit (yi)) ? (1) : (-1) ;
den = yr + r * yi ;
tr = (xr + xi * r) / den ;
ti = (xi - xr * r) / den ;
}
else if (fabs (yr) >= fabs (yi))
{
r = yi / yr ;
den = yr + r * yi ;
tr = (xr + xi * r) / den ;
ti = (xi - xr * r) / den ;
}
else
{
r = yr / yi ;
den = r * yr + yi ;
tr = (xr * r + xi) / den ;
ti = (xi * r - xr) / den ;
}
(*zr) = tr ;
(*zi) = ti ;
return (den == 0) ;
}
GB_MATH_KERNEL GxB_FC64_t GB_FC64_div (GxB_FC64_t x, GxB_FC64_t y)
{
double zr, zi ;
GB_divcomplex (creal (x), cimag (x), creal (y), cimag (y), &zr, &zi) ;
return (GxB_CMPLX (zr, zi)) ;
}
GB_MATH_KERNEL GxB_FC32_t GB_FC32_div (GxB_FC32_t x, GxB_FC32_t y)
{
// single complex division is slow but as accurate as possible: typecast to
// double complex, do the division, and then typecast back to single
// complex.
double zr, zi ;
GB_divcomplex ((double) crealf (x), (double) cimagf (x),
(double) crealf (y), (double) cimagf (y), &zr, &zi) ;
return (GxB_CMPLXF ((float) zr, (float) zi)) ;
}
//------------------------------------------------------------------------------
// z = x^y: wrappers for pow, powf, cpow, and cpowf
//------------------------------------------------------------------------------
// if x or y are NaN, then z is NaN
// if y is zero, then z is 1
// if (x and y are complex but with zero imaginary parts, and
// (x >= 0 or if y is an integer, NaN, or Inf)), then z is real
// else use the built-in C library function, z = pow (x,y)
GB_MATH_KERNEL float GB_powf (float x, float y)
{
int xr_class = fpclassify (x) ;
int yr_class = fpclassify (y) ;
if (xr_class == FP_NAN || yr_class == FP_NAN)
{
// z is nan if either x or y are nan
return (NAN) ;
}
if (yr_class == FP_ZERO)
{
// z is 1 if y is zero
return (1) ;
}
// otherwise, z = powf (x,y)
return (powf (x, y)) ;
}
GB_MATH_KERNEL double GB_pow (double x, double y)
{
int xr_class = fpclassify (x) ;
int yr_class = fpclassify (y) ;
if (xr_class == FP_NAN || yr_class == FP_NAN)
{
// z is nan if either x or y are nan
return (NAN) ;
}
if (yr_class == FP_ZERO)
{
// z is 1 if y is zero
return (1) ;
}
// otherwise, z = pow (x,y)
return (pow (x, y)) ;
}
GB_MATH_KERNEL GxB_FC32_t GB_cpowf (GxB_FC32_t x, GxB_FC32_t y)
{
float xr = crealf (x) ;
float yr = crealf (y) ;
int xr_class = fpclassify (xr) ;
int yr_class = fpclassify (yr) ;
int xi_class = fpclassify (cimagf (x)) ;
int yi_class = fpclassify (cimagf (y)) ;
if (xi_class == FP_ZERO && yi_class == FP_ZERO)
{
// both x and y are real; see if z should be real
if (xr >= 0 || yr_class == FP_NAN || yr_class == FP_INFINITE ||
yr == truncf (yr))
{
// z is real if x >= 0, or if y is an integer, NaN, or Inf
return (GxB_CMPLXF (GB_powf (xr, yr), 0)) ;
}
}
if (xr_class == FP_NAN || xi_class == FP_NAN ||
yr_class == FP_NAN || yi_class == FP_NAN)
{
// z is (nan,nan) if any part of x or y are nan
return (GxB_CMPLXF (NAN, NAN)) ;
}
if (yr_class == FP_ZERO && yi_class == FP_ZERO)
{
// z is (1,0) if y is (0,0)
return (GxB_CMPLXF (1, 0)) ;
}
return (cpowf (x, y)) ;
}
GB_MATH_KERNEL GxB_FC64_t GB_cpow (GxB_FC64_t x, GxB_FC64_t y)
{
double xr = creal (x) ;
double yr = creal (y) ;
int xr_class = fpclassify (xr) ;
int yr_class = fpclassify (yr) ;
int xi_class = fpclassify (cimag (x)) ;
int yi_class = fpclassify (cimag (y)) ;
if (xi_class == FP_ZERO && yi_class == FP_ZERO)
{
// both x and y are real; see if z should be real
if (xr >= 0 || yr_class == FP_NAN || yr_class == FP_INFINITE ||
yr == trunc (yr))
{
// z is real if x >= 0, or if y is an integer, NaN, or Inf
return (GxB_CMPLX (GB_pow (xr, yr), 0)) ;
}
}
if (xr_class == FP_NAN || xi_class == FP_NAN ||
yr_class == FP_NAN || yi_class == FP_NAN)
{
// z is (nan,nan) if any part of x or y are nan
return (GxB_CMPLX (NAN, NAN)) ;
}
if (yr_class == FP_ZERO && yi_class == FP_ZERO)
{
// z is (1,0) if y is (0,0)
return (GxB_CMPLX (1, 0)) ;
}
return (cpow (x, y)) ;
}
GB_MATH_KERNEL int8_t GB_pow_int8 (int8_t x, int8_t y)
{
return (GB_cast_to_int8_t (GB_pow ((double) x, (double) y))) ;
}
GB_MATH_KERNEL int16_t GB_pow_int16 (int16_t x, int16_t y)
{
return (GB_cast_to_int16_t (GB_pow ((double) x, (double) y))) ;
}
GB_MATH_KERNEL int32_t GB_pow_int32 (int32_t x, int32_t y)
{
return (GB_cast_to_int32_t (GB_pow ((double) x, (double) y))) ;
}
GB_MATH_KERNEL int64_t GB_pow_int64 (int64_t x, int64_t y)
{
return (GB_cast_to_int64_t (GB_pow ((double) x, (double) y))) ;
}
GB_MATH_KERNEL uint8_t GB_pow_uint8 (uint8_t x, uint8_t y)
{
return (GB_cast_to_uint8_t (GB_pow ((double) x, (double) y))) ;
}
GB_MATH_KERNEL uint16_t GB_pow_uint16 (uint16_t x, uint16_t y)
{
return (GB_cast_to_uint16_t (GB_pow ((double) x, (double) y))) ;
}
GB_MATH_KERNEL uint32_t GB_pow_uint32 (uint32_t x, uint32_t y)
{
return (GB_cast_to_uint32_t (GB_pow ((double) x, (double) y))) ;
}
GB_MATH_KERNEL uint64_t GB_pow_uint64 (uint64_t x, uint64_t y)
{
return (GB_cast_to_uint64_t (GB_pow ((double) x, (double) y))) ;
}
//------------------------------------------------------------------------------
// frexp for float and double
//------------------------------------------------------------------------------
GB_MATH_KERNEL float GB_frexpxf (float x)
{
// ignore the exponent and just return the mantissa
int exp_ignored ;
return (frexpf (x, &exp_ignored)) ;
}
GB_MATH_KERNEL float GB_frexpef (float x)
{
// ignore the mantissa and just return the exponent
int exp ;
(void) frexpf (x, &exp) ;
return ((float) exp) ;
}
GB_MATH_KERNEL double GB_frexpx (double x)
{
// ignore the exponent and just return the mantissa
int exp_ignored ;
return (frexp (x, &exp_ignored)) ;
}
GB_MATH_KERNEL double GB_frexpe (double x)
{
// ignore the mantissa and just return the exponent
int exp ;
(void) frexp (x, &exp) ;
return ((double) exp) ;
}
//------------------------------------------------------------------------------
// signum functions
//------------------------------------------------------------------------------
GB_MATH_KERNEL float GB_signumf (float x)
{
if (isnan (x)) return (x) ;
return ((float) ((x < 0) ? (-1) : ((x > 0) ? 1 : 0))) ;
}
GB_MATH_KERNEL double GB_signum (double x)
{
if (isnan (x)) return (x) ;
return ((double) ((x < 0) ? (-1) : ((x > 0) ? 1 : 0))) ;
}
GB_MATH_KERNEL GxB_FC32_t GB_csignumf (GxB_FC32_t x)
{
if (crealf (x) == 0 && cimagf (x) == 0) return (GxB_CMPLXF (0,0)) ;
float y = cabsf (x) ;
return (GxB_CMPLXF (crealf (x) / y, cimagf (x) / y)) ;
}
GB_MATH_KERNEL GxB_FC64_t GB_csignum (GxB_FC64_t x)
{
if (creal (x) == 0 && cimag (x) == 0) return (GxB_CMPLX (0,0)) ;
double y = cabs (x) ;
return (GxB_CMPLX (creal (x) / y, cimag (x) / y)) ;
}
//------------------------------------------------------------------------------
// complex functions
//------------------------------------------------------------------------------
// The ANSI C11 math.h header defines the ceil, floor, round, trunc,
// exp2, expm1, log10, log1pm, or log2 functions for float and double,
// but the corresponding functions do not appear in the ANSI C11 complex.h.
// These functions are used instead, for float complex and double complex.
//------------------------------------------------------------------------------
// z = ceil (x) for float complex
//------------------------------------------------------------------------------
GB_MATH_KERNEL GxB_FC32_t GB_cceilf (GxB_FC32_t x)
{
return (GxB_CMPLXF (ceilf (crealf (x)), ceilf (cimagf (x)))) ;
}
//------------------------------------------------------------------------------
// z = ceil (x) for double complex
//------------------------------------------------------------------------------
GB_MATH_KERNEL GxB_FC64_t GB_cceil (GxB_FC64_t x)
{
return (GxB_CMPLX (ceil (creal (x)), ceil (cimag (x)))) ;
}
//------------------------------------------------------------------------------
// z = floor (x) for float complex
//------------------------------------------------------------------------------
GB_MATH_KERNEL GxB_FC32_t GB_cfloorf (GxB_FC32_t x)
{
return (GxB_CMPLXF (floorf (crealf (x)), floorf (cimagf (x)))) ;
}
//------------------------------------------------------------------------------
// z = floor (x) for double complex
//------------------------------------------------------------------------------
GB_MATH_KERNEL GxB_FC64_t GB_cfloor (GxB_FC64_t x)
{
return (GxB_CMPLX (floor (creal (x)), floor (cimag (x)))) ;
}
//------------------------------------------------------------------------------
// z = round (x) for float complex
//------------------------------------------------------------------------------
GB_MATH_KERNEL GxB_FC32_t GB_croundf (GxB_FC32_t x)
{
return (GxB_CMPLXF (roundf (crealf (x)), roundf (cimagf (x)))) ;
}
//------------------------------------------------------------------------------
// z = round (x) for double complex
//------------------------------------------------------------------------------
GB_MATH_KERNEL GxB_FC64_t GB_cround (GxB_FC64_t x)
{
return (GxB_CMPLX (round (creal (x)), round (cimag (x)))) ;
}
//------------------------------------------------------------------------------
// z = trunc (x) for float complex
//------------------------------------------------------------------------------
GB_MATH_KERNEL GxB_FC32_t GB_ctruncf (GxB_FC32_t x)
{
return (GxB_CMPLXF (truncf (crealf (x)), truncf (cimagf (x)))) ;
}
//------------------------------------------------------------------------------
// z = trunc (x) for double complex
//------------------------------------------------------------------------------
GB_MATH_KERNEL GxB_FC64_t GB_ctrunc (GxB_FC64_t x)
{
return (GxB_CMPLX (trunc (creal (x)), trunc (cimag (x)))) ;
}
//------------------------------------------------------------------------------
// z = exp2 (x) for float complex
//------------------------------------------------------------------------------
GB_MATH_KERNEL GxB_FC32_t GB_cexp2f (GxB_FC32_t x)
{
if (fpclassify (cimagf (x)) == FP_ZERO)
{
// x is real, use exp2f
return (GxB_CMPLXF (exp2f (crealf (x)), 0)) ;
}
return (GB_cpowf (GxB_CMPLXF (2,0), x)) ; // z = 2^x
}
//------------------------------------------------------------------------------
// z = exp2 (x) for double complex
//------------------------------------------------------------------------------
GB_MATH_KERNEL GxB_FC64_t GB_cexp2 (GxB_FC64_t x)
{
if (fpclassify (cimag (x)) == FP_ZERO)
{
// x is real, use exp2
return (GxB_CMPLX (exp2 (creal (x)), 0)) ;
}
return (GB_cpow (GxB_CMPLX (2,0), x)) ; // z = 2^x
}
//------------------------------------------------------------------------------
// z = expm1 (x) for double complex
//------------------------------------------------------------------------------
GB_MATH_KERNEL GxB_FC64_t GB_cexpm1 (GxB_FC64_t x)
{
// FUTURE: GB_cexpm1 is not accurate
// z = cexp (x) - 1
GxB_FC64_t z = cexp (x) ;
return (GxB_CMPLX (creal (z) - 1, cimag (z))) ;
}
//------------------------------------------------------------------------------
// z = expm1 (x) for float complex
//------------------------------------------------------------------------------
GB_MATH_KERNEL GxB_FC32_t GB_cexpm1f (GxB_FC32_t x)
{
// typecast to double and use GB_cexpm1
GxB_FC64_t z = GxB_CMPLX ((double) crealf (x), (double) cimagf (x)) ;
z = GB_cexpm1 (z) ;
return (GxB_CMPLXF ((float) creal (z), (float) cimag (z))) ;
}
//------------------------------------------------------------------------------
// z = log1p (x) for double complex
//------------------------------------------------------------------------------
GB_MATH_KERNEL GxB_FC64_t GB_clog1p (GxB_FC64_t x)
{
// FUTURE: GB_clog1p is not accurate
// z = clog (1+x)
return (clog (GxB_CMPLX (creal (x) + 1, cimag (x)))) ;
}
//------------------------------------------------------------------------------
// z = log1p (x) for float complex
//------------------------------------------------------------------------------
GB_MATH_KERNEL GxB_FC32_t GB_clog1pf (GxB_FC32_t x)
{
// typecast to double and use GB_clog1p
GxB_FC64_t z = GxB_CMPLX ((double) crealf (x), (double) cimagf (x)) ;
z = GB_clog1p (z) ;
return (GxB_CMPLXF ((float) creal (z), (float) cimag (z))) ;
}
//------------------------------------------------------------------------------
// z = log10 (x) for float complex
//------------------------------------------------------------------------------
// log_e (10) in single precision
#define GB_LOG10EF 2.3025851f
GB_MATH_KERNEL GxB_FC32_t GB_clog10f (GxB_FC32_t x)
{
// z = log (x) / log (10)
return (GB_FC32_div (clogf (x), GxB_CMPLXF (GB_LOG10EF, 0))) ;
}
//------------------------------------------------------------------------------
// z = log10 (x) for double complex
//------------------------------------------------------------------------------
// log_e (10) in double precision
#define GB_LOG10E 2.302585092994045901
GB_MATH_KERNEL GxB_FC64_t GB_clog10 (GxB_FC64_t x)
{
// z = log (x) / log (10)
return (GB_FC64_div (clog (x), GxB_CMPLX (GB_LOG10E, 0))) ;
}
//------------------------------------------------------------------------------
// z = log2 (x) for float complex
//------------------------------------------------------------------------------
// log_e (2) in single precision
#define GB_LOG2EF 0.69314718f
GB_MATH_KERNEL GxB_FC32_t GB_clog2f (GxB_FC32_t x)
{
// z = log (x) / log (2)
return (GB_FC32_div (clogf (x), GxB_CMPLXF (GB_LOG2EF, 0))) ;
}
//------------------------------------------------------------------------------
// z = log2 (x) for double complex
//------------------------------------------------------------------------------
// log_e (2) in double precision
#define GB_LOG2E 0.693147180559945286
GB_MATH_KERNEL GxB_FC64_t GB_clog2 (GxB_FC64_t x)
{
// z = log (x) / log (2)
return (GB_FC64_div (clog (x), GxB_CMPLX (GB_LOG2E, 0))) ;
}
//------------------------------------------------------------------------------
// z = isinf (x) for float complex
//------------------------------------------------------------------------------
GB_MATH_KERNEL bool GB_cisinff (GxB_FC32_t x)
{
return (isinf (crealf (x)) || isinf (cimagf (x))) ;
}
//------------------------------------------------------------------------------
// z = isinf (x) for double complex
//------------------------------------------------------------------------------
GB_MATH_KERNEL bool GB_cisinf (GxB_FC64_t x)
{
return (isinf (creal (x)) || isinf (cimag (x))) ;
}
//------------------------------------------------------------------------------
// z = isnan (x) for float complex
//------------------------------------------------------------------------------
GB_MATH_KERNEL bool GB_cisnanf (GxB_FC32_t x)
{
return (isnan (crealf (x)) || isnan (cimagf (x))) ;
}
//------------------------------------------------------------------------------
// z = isnan (x) for double complex
//------------------------------------------------------------------------------
GB_MATH_KERNEL bool GB_cisnan (GxB_FC64_t x)
{
return (isnan (creal (x)) || isnan (cimag (x))) ;
}
//------------------------------------------------------------------------------
// z = isfinite (x) for float complex
//------------------------------------------------------------------------------
GB_MATH_KERNEL bool GB_cisfinitef (GxB_FC32_t x)
{
return (isfinite (crealf (x)) && isfinite (cimagf (x))) ;
}
//------------------------------------------------------------------------------
// z = isfinite (x) for double complex
//------------------------------------------------------------------------------
GB_MATH_KERNEL bool GB_cisfinite (GxB_FC64_t x)
{
return (isfinite (creal (x)) && isfinite (cimag (x))) ;
}
#undef GB_MATH_KERNEL
#endif
|