1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
|
//------------------------------------------------------------------------------
// GB_msort_2: sort a 2-by-n list of integers, using A[0:1][ ] as the key
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// A parallel mergesort of an array of 2-by-n integers. Each key
// consists of two integers.
#include "GB_msort_2.h"
//------------------------------------------------------------------------------
// GB_msort_2_binary_search: binary search for the pivot
//------------------------------------------------------------------------------
// The Pivot value is Z [pivot], and a binary search for the Pivot is made in
// the array X [p_pstart...p_end-1], which is sorted in non-decreasing order on
// input. The return value is pleft, where
//
// X [p_start ... pleft-1] <= Pivot and
// X [pleft ... p_end-1] >= Pivot holds.
//
// pleft is returned in the range p_start to p_end. If pleft is p_start, then
// the Pivot is smaller than all entries in X [p_start...p_end-1], and the left
// list X [p_start...pleft-1] is empty. If pleft is p_end, then the Pivot is
// larger than all entries in X [p_start...p_end-1], and the right list X
// [pleft...p_end-1] is empty.
static int64_t GB_msort_2_binary_search // return pleft
(
const int64_t *restrict Z_0, // Pivot is Z [pivot]
const int64_t *restrict Z_1,
const int64_t pivot,
const int64_t *restrict X_0, // search in X [p_start..p_end_-1]
const int64_t *restrict X_1,
const int64_t p_start,
const int64_t p_end
)
{
//--------------------------------------------------------------------------
// find where the Pivot appears in X
//--------------------------------------------------------------------------
// binary search of X [p_start...p_end-1] for the Pivot
int64_t pleft = p_start ;
int64_t pright = p_end - 1 ;
while (pleft < pright)
{
int64_t pmiddle = (pleft + pright) >> 1 ;
// less = (X [pmiddle] < Pivot)
bool less = GB_lt_2 (X_0, X_1, pmiddle,
Z_0, Z_1, pivot) ;
pleft = less ? (pmiddle+1) : pleft ;
pright = less ? pright : pmiddle ;
}
// binary search is narrowed down to a single item
// or it has found the list is empty:
ASSERT (pleft == pright || pleft == pright + 1) ;
// If found is true then X [pleft == pright] == Pivot. If duplicates
// appear then X [pleft] is any one of the entries equal to the Pivot
// in the list. If found is false then
// X [p_start ... pleft-1] < Pivot and
// X [pleft+1 ... p_end-1] > Pivot holds.
// The value X [pleft] may be either < or > Pivot.
bool found = (pleft == pright) && GB_eq_2 (X_0, X_1, pleft,
Z_0, Z_1, pivot) ;
// Modify pleft and pright:
if (!found && (pleft == pright))
{
if (GB_lt_2 (X_0, X_1, pleft,
Z_0, Z_1, pivot))
{
pleft++ ;
}
else
{
// pright++ ; // (not needed)
}
}
//--------------------------------------------------------------------------
// return result
//--------------------------------------------------------------------------
// If found is false then
// X [p_start ... pleft-1] < Pivot and
// X [pleft ... p_end-1] > Pivot holds,
// and pleft-1 == pright
// If X has no duplicates, then whether or not Pivot is found,
// X [p_start ... pleft-1] < Pivot and
// X [pleft ... p_end-1] >= Pivot holds.
// If X has duplicates, then whether or not Pivot is found,
// X [p_start ... pleft-1] <= Pivot and
// X [pleft ... p_end-1] >= Pivot holds.
return (pleft) ;
}
//------------------------------------------------------------------------------
// GB_msort_2_create_merge_tasks
//------------------------------------------------------------------------------
// Recursively constructs ntasks tasks to merge two arrays, Left and Right,
// into Sresult, where Left is L [pL_start...pL_end-1], Right is R
// [pR_start...pR_end-1], and Sresult is S [pS_start...pS_start+total_work-1],
// and where total_work is the total size of Left and Right.
//
// Task tid will merge L [L_task [tid] ... L_task [tid] + L_len [tid] - 1] and
// R [R_task [tid] ... R_task [tid] + R_len [tid] -1] into the merged output
// array S [S_task [tid] ... ]. The task tids created are t0 to
// t0+ntasks-1.
void GB_msort_2_create_merge_tasks
(
// output:
int64_t *restrict L_task, // L_task [t0...t0+ntasks-1] computed
int64_t *restrict L_len, // L_len [t0...t0+ntasks-1] computed
int64_t *restrict R_task, // R_task [t0...t0+ntasks-1] computed
int64_t *restrict R_len, // R_len [t0...t0+ntasks-1] computed
int64_t *restrict S_task, // S_task [t0...t0+ntasks-1] computed
// input:
const int t0, // first task tid to create
const int ntasks, // # of tasks to create
const int64_t pS_start, // merge into S [pS_start...]
const int64_t *restrict L_0, // Left = L [pL_start...pL_end-1]
const int64_t *restrict L_1,
const int64_t pL_start,
const int64_t pL_end,
const int64_t *restrict R_0, // Right = R [pR_start...pR_end-1]
const int64_t *restrict R_1,
const int64_t pR_start,
const int64_t pR_end
)
{
//--------------------------------------------------------------------------
// get problem size
//--------------------------------------------------------------------------
int64_t nleft = pL_end - pL_start ; // size of Left array
int64_t nright = pR_end - pR_start ; // size of Right array
int64_t total_work = nleft + nright ; // total work to do
ASSERT (ntasks >= 1) ;
ASSERT (total_work > 0) ;
//--------------------------------------------------------------------------
// create the tasks
//--------------------------------------------------------------------------
if (ntasks == 1)
{
//----------------------------------------------------------------------
// a single task will merge all of Left and Right into Sresult
//----------------------------------------------------------------------
L_task [t0] = pL_start ; L_len [t0] = nleft ;
R_task [t0] = pR_start ; R_len [t0] = nright ;
S_task [t0] = pS_start ;
}
else
{
//----------------------------------------------------------------------
// partition the Left and Right arrays for multiple merge tasks
//----------------------------------------------------------------------
int64_t pleft, pright ;
if (nleft >= nright)
{
// split Left in half, and search for its pivot in Right
pleft = (pL_end + pL_start) >> 1 ;
pright = GB_msort_2_binary_search (
L_0, L_1, pleft,
R_0, R_1, pR_start, pR_end) ;
}
else
{
// split Right in half, and search for its pivot in Left
pright = (pR_end + pR_start) >> 1 ;
pleft = GB_msort_2_binary_search (
R_0, R_1, pright,
L_0, L_1, pL_start, pL_end) ;
}
//----------------------------------------------------------------------
// partition the tasks according to the work of each partition
//----------------------------------------------------------------------
// work0 is the total work in the first partition
int64_t work0 = (pleft - pL_start) + (pright - pR_start) ;
int ntasks0 = (int) round ((double) ntasks *
(((double) work0) / ((double) total_work))) ;
// ensure at least one task is assigned to each partition
ntasks0 = GB_IMAX (ntasks0, 1) ;
ntasks0 = GB_IMIN (ntasks0, ntasks-1) ;
int ntasks1 = ntasks - ntasks0 ;
//----------------------------------------------------------------------
// assign ntasks0 to the first half
//----------------------------------------------------------------------
// ntasks0 tasks merge L [pL_start...pleft-1] and R [pR_start..pright-1]
// into the result S [pS_start...work0-1].
GB_msort_2_create_merge_tasks (
L_task, L_len, R_task, R_len, S_task, t0, ntasks0, pS_start,
L_0, L_1, pL_start, pleft,
R_0, R_1, pR_start, pright) ;
//----------------------------------------------------------------------
// assign ntasks1 to the second half
//----------------------------------------------------------------------
// ntasks1 tasks merge L [pleft...pL_end-1] and R [pright...pR_end-1]
// into the result S [pS_start+work0...pS_start+total_work].
int t1 = t0 + ntasks0 ; // first task id of the second set of tasks
int64_t pS_start1 = pS_start + work0 ; // 2nd set starts here in S
GB_msort_2_create_merge_tasks (
L_task, L_len, R_task, R_len, S_task, t1, ntasks1, pS_start1,
L_0, L_1, pleft, pL_end,
R_0, R_1, pright, pR_end) ;
}
}
//------------------------------------------------------------------------------
// GB_msort_2_merge: merge two sorted lists via a single thread
//------------------------------------------------------------------------------
// merge Left [0..nleft-1] and Right [0..nright-1] into S [0..nleft+nright-1] */
static void GB_msort_2_merge
(
int64_t *restrict S_0, // output of length nleft + nright
int64_t *restrict S_1,
const int64_t *restrict Left_0, // left input of length nleft
const int64_t *restrict Left_1,
const int64_t nleft,
const int64_t *restrict Right_0, // right input of length nright
const int64_t *restrict Right_1,
const int64_t nright
)
{
int64_t p, pleft, pright ;
// merge the two inputs, Left and Right, while both inputs exist
for (p = 0, pleft = 0, pright = 0 ; pleft < nleft && pright < nright ; p++)
{
if (GB_lt_2 (Left_0, Left_1, pleft,
Right_0, Right_1, pright))
{
// S [p] = Left [pleft++]
S_0 [p] = Left_0 [pleft] ;
S_1 [p] = Left_1 [pleft] ;
pleft++ ;
}
else
{
// S [p] = Right [pright++]
S_0 [p] = Right_0 [pright] ;
S_1 [p] = Right_1 [pright] ;
pright++ ;
}
}
// either input is exhausted; copy the remaining list into S
if (pleft < nleft)
{
int64_t nremaining = (nleft - pleft) ;
memcpy (S_0 + p, Left_0 + pleft, nremaining * sizeof (int64_t)) ;
memcpy (S_1 + p, Left_1 + pleft, nremaining * sizeof (int64_t)) ;
}
else if (pright < nright)
{
int64_t nremaining = (nright - pright) ;
memcpy (S_0 + p, Right_0 + pright, nremaining * sizeof (int64_t)) ;
memcpy (S_1 + p, Right_1 + pright, nremaining * sizeof (int64_t)) ;
}
}
//------------------------------------------------------------------------------
// GB_msort_2: parallel mergesort
//------------------------------------------------------------------------------
GB_PUBLIC
GrB_Info GB_msort_2 // sort array A of size 2-by-n, using 2 keys (A [0:1][])
(
int64_t *restrict A_0, // size n array
int64_t *restrict A_1, // size n array
const int64_t n,
int nthreads // # of threads to use
)
{
//--------------------------------------------------------------------------
// handle small problems with a single thread
//--------------------------------------------------------------------------
if (nthreads <= 1 || n <= GB_BASECASE)
{
// sequential quicksort
GB_qsort_2 (A_0, A_1, n) ;
return (GrB_SUCCESS) ;
}
//--------------------------------------------------------------------------
// determine # of tasks
//--------------------------------------------------------------------------
// determine the number of levels to create, which must always be an
// even number. The # of levels is chosen to ensure that the # of leaves
// of the task tree is between 4*nthreads and 16*nthreads.
// 2 to 4 threads: 4 levels, 16 qsort leaves
// 5 to 16 threads: 6 levels, 64 qsort leaves
// 17 to 64 threads: 8 levels, 256 qsort leaves
// 65 to 256 threads: 10 levels, 1024 qsort leaves
// 256 to 1024 threads: 12 levels, 4096 qsort leaves
// ...
int k = (int) (2 + 2 * ceil (log2 ((double) nthreads) / 2)) ;
int ntasks = 1 << k ;
//--------------------------------------------------------------------------
// allocate workspace
//--------------------------------------------------------------------------
int64_t *restrict W = NULL ; size_t W_size = 0 ;
W = GB_MALLOC_WORK (2*n + 6*ntasks + 1, int64_t, &W_size) ;
if (W == NULL)
{
// out of memory
return (GrB_OUT_OF_MEMORY) ;
}
int64_t *T = W ;
int64_t *restrict W_0 = T ; T += n ;
int64_t *restrict W_1 = T ; T += n ;
int64_t *restrict L_task = T ; T += ntasks ;
int64_t *restrict L_len = T ; T += ntasks ;
int64_t *restrict R_task = T ; T += ntasks ;
int64_t *restrict R_len = T ; T += ntasks ;
int64_t *restrict S_task = T ; T += ntasks ;
int64_t *restrict Slice = T ; T += (ntasks+1) ;
//--------------------------------------------------------------------------
// partition and sort the leaves
//--------------------------------------------------------------------------
GB_eslice (Slice, n, ntasks) ;
int tid ;
#pragma omp parallel for num_threads(nthreads) schedule(dynamic,1)
for (tid = 0 ; tid < ntasks ; tid++)
{
int64_t leaf = Slice [tid] ;
int64_t leafsize = Slice [tid+1] - leaf ;
GB_qsort_2 (A_0 + leaf, A_1 + leaf, leafsize) ;
}
//--------------------------------------------------------------------------
// merge each level
//--------------------------------------------------------------------------
int nt = 1 ;
for ( ; k >= 2 ; k -= 2)
{
//----------------------------------------------------------------------
// merge level k into level k-1, from A into W
//----------------------------------------------------------------------
// TODO: skip k and k-1 for each group of 4 sublists of A if they are
// already sorted with respect to each other.
// this could be done in parallel if ntasks was large
for (int tid = 0 ; tid < ntasks ; tid += 2*nt)
{
// create 2*nt tasks to merge two A sublists into one W sublist
GB_msort_2_create_merge_tasks (
L_task, L_len, R_task, R_len, S_task, tid, 2*nt, Slice [tid],
A_0, A_1, Slice [tid], Slice [tid+nt],
A_0, A_1, Slice [tid+nt], Slice [tid+2*nt]) ;
}
#pragma omp parallel for num_threads(nthreads) schedule(dynamic,1)
for (tid = 0 ; tid < ntasks ; tid++)
{
// merge A [pL...pL+nL-1] and A [pR...pR+nR-1] into W [pS..]
int64_t pL = L_task [tid], nL = L_len [tid] ;
int64_t pR = R_task [tid], nR = R_len [tid] ;
int64_t pS = S_task [tid] ;
GB_msort_2_merge (
W_0 + pS, W_1 + pS,
A_0 + pL, A_1 + pL, nL,
A_0 + pR, A_1 + pR, nR) ;
}
nt = 2*nt ;
//----------------------------------------------------------------------
// merge level k-1 into level k-2, from W into A
//----------------------------------------------------------------------
// this could be done in parallel if ntasks was large
for (int tid = 0 ; tid < ntasks ; tid += 2*nt)
{
// create 2*nt tasks to merge two W sublists into one A sublist
GB_msort_2_create_merge_tasks (
L_task, L_len, R_task, R_len, S_task, tid, 2*nt, Slice [tid],
W_0, W_1, Slice [tid], Slice [tid+nt],
W_0, W_1, Slice [tid+nt], Slice [tid+2*nt]) ;
}
#pragma omp parallel for num_threads(nthreads) schedule(dynamic,1)
for (tid = 0 ; tid < ntasks ; tid++)
{
// merge A [pL...pL+nL-1] and A [pR...pR+nR-1] into W [pS..]
int64_t pL = L_task [tid], nL = L_len [tid] ;
int64_t pR = R_task [tid], nR = R_len [tid] ;
int64_t pS = S_task [tid] ;
GB_msort_2_merge (
A_0 + pS, A_1 + pS,
W_0 + pL, W_1 + pL, nL,
W_0 + pR, W_1 + pR, nR) ;
}
nt = 2*nt ;
}
//--------------------------------------------------------------------------
// free workspace and return result
//--------------------------------------------------------------------------
GB_FREE_WORK (&W, W_size) ;
return (GrB_SUCCESS) ;
}
|