File: GB_mxm.h

package info (click to toggle)
suitesparse-graphblas 7.4.0%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 67,112 kB
  • sloc: ansic: 1,072,243; cpp: 8,081; sh: 512; makefile: 506; asm: 369; python: 125; awk: 10
file content (304 lines) | stat: -rw-r--r-- 12,359 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
//------------------------------------------------------------------------------
// GB_mxm.h: definitions for C=A*B
//------------------------------------------------------------------------------

// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

//------------------------------------------------------------------------------

#ifndef GB_MXM_H
#define GB_MXM_H
#include "GB_AxB_saxpy.h"
#include "GB_binop.h"

//------------------------------------------------------------------------------

GrB_Info GB_mxm                     // C<M> = A*B
(
    GrB_Matrix C,                   // input/output matrix for results
    const bool C_replace,           // if true, clear C before writing to it
    const GrB_Matrix M,             // optional mask for C, unused if NULL
    const bool Mask_comp,           // if true, use !M
    const bool Mask_struct,         // if true, use the only structure of M
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const GrB_Semiring semiring,    // defines '+' and '*' for C=A*B
    const GrB_Matrix A,             // input matrix
    const bool A_transpose,         // if true, use A' instead of A
    const GrB_Matrix B,             // input matrix
    const bool B_transpose,         // if true, use B' instead of B
    const bool flipxy,              // if true, do z=fmult(b,a) vs fmult(a,b)
    const GrB_Desc_Value AxB_method,// for auto vs user selection of methods
    const int do_sort,              // if nonzero, try to return C unjumbled
    GB_Context Context
) ;

GrB_Info GB_AxB_dot                 // dot product (multiple methods)
(
    GrB_Matrix C,                   // output matrix, static header
    GrB_Matrix C_in_place,          // input/output matrix, if done in-place
    GrB_Matrix M,                   // optional mask matrix
    const bool Mask_comp,           // if true, use !M
    const bool Mask_struct,         // if true, use the only structure of M
    const GrB_BinaryOp accum,
    const GrB_Matrix A,             // input matrix A
    const GrB_Matrix B,             // input matrix B
    const GrB_Semiring semiring,    // semiring that defines C=A*B
    const bool flipxy,              // if true, do z=fmult(b,a) vs fmult(a,b)
    bool *mask_applied,             // if true, mask was applied
    bool *done_in_place,            // if true, C_in_place was computed in-place
    GB_Context Context
) ;

GB_PUBLIC
GrB_Info GB_AxB_meta                // C<M>=A*B meta algorithm
(
    GrB_Matrix C,                   // output, static header (if not in-place)
    GrB_Matrix C_in,                // input/output matrix, if done in-place
    bool C_replace,                 // C matrix descriptor
    const bool C_is_csc,            // desired CSR/CSC format of C
    GrB_Matrix MT,                  // return MT = M' (static header)
    bool *M_transposed,             // true if MT = M' was computed
    const GrB_Matrix M_in,          // mask for C<M> (not complemented)
    const bool Mask_comp,           // if true, use !M
    const bool Mask_struct,         // if true, use the only structure of M
    const GrB_BinaryOp accum,       // accum operator for C_in += A*B
    const GrB_Matrix A_in,          // input matrix
    const GrB_Matrix B_in,          // input matrix
    const GrB_Semiring semiring,    // semiring that defines C=A*B
    bool A_transpose,               // if true, use A', else A
    bool B_transpose,               // if true, use B', else B
    bool flipxy,                    // if true, do z=fmult(b,a) vs fmult(a,b)
    bool *mask_applied,             // if true, mask was applied
    bool *done_in_place,            // if true, C was computed in-place
    GrB_Desc_Value AxB_method,      // for auto vs user selection of methods
    const int do_sort,              // if nonzero, try to return C unjumbled
    GB_Context Context
) ;

GrB_Info GB_AxB_rowscale            // C = D*B, row scale with diagonal D
(
    GrB_Matrix C,                   // output matrix, static header
    const GrB_Matrix D,             // diagonal input matrix
    const GrB_Matrix B,             // input matrix
    const GrB_Semiring semiring,    // semiring that defines C=D*A
    const bool flipxy,              // if true, do z=fmult(b,a) vs fmult(a,b)
    GB_Context Context
) ;

GrB_Info GB_AxB_colscale            // C = A*D, column scale with diagonal D
(
    GrB_Matrix C,                   // output matrix, static header
    const GrB_Matrix A,             // input matrix
    const GrB_Matrix D,             // diagonal input matrix
    const GrB_Semiring semiring,    // semiring that defines C=A*D
    const bool flipxy,              // if true, do z=fmult(b,a) vs fmult(a,b)
    GB_Context Context
) ;


bool GB_AxB_semiring_builtin        // true if semiring is builtin
(
    // inputs:
    const GrB_Matrix A,
    const bool A_is_pattern,        // true if only the pattern of A is used
    const GrB_Matrix B,
    const bool B_is_pattern,        // true if only the pattern of B is used
    const GrB_Semiring semiring,    // semiring that defines C=A*B
    const bool flipxy,              // true if z=fmult(y,x), flipping x and y
    // outputs, unused by caller if this function returns false
    GB_Opcode *mult_binop_code,     // multiply opcode
    GB_Opcode *add_binop_code,      // add opcode
    GB_Type_code *xcode,            // type code for x input
    GB_Type_code *ycode,            // type code for y input
    GB_Type_code *zcode             // type code for z output
) ;

GB_PUBLIC
GrB_Info GB_AxB_dot2                // C=A'*B or C<!M>=A'*B, dot product method
(
    GrB_Matrix C,                   // output matrix, static header
    const bool C_iso,               // true if C is iso
    const GB_void *cscalar,         // iso value of C
    const GrB_Matrix M_in,          // mask matrix for C<!M>=A'*B, may be NULL
    const bool Mask_comp,           // if true, use !M
    const bool Mask_struct,         // if true, use the only structure of M
    const bool A_not_transposed,    // if true, C=A*B, else C=A'*B
    const GrB_Matrix A_in,          // input matrix
    const GrB_Matrix B_in,          // input matrix
    const GrB_Semiring semiring,    // semiring that defines C=A*B
    const bool flipxy,              // if true, do z=fmult(b,a) vs fmult(a,b)
    GB_Context Context
) ;

bool GB_is_diagonal             // true if A is diagonal
(
    const GrB_Matrix A,         // input matrix to examine
    GB_Context Context
) ;

GB_PUBLIC
GrB_Info GB_AxB_dot3                // C<M> = A'*B using dot product method
(
    GrB_Matrix C,                   // output matrix, static header
    const bool C_iso,               // true if C is iso
    const GB_void *cscalar,         // iso value of C
    const GrB_Matrix M,             // mask matrix
    const bool Mask_struct,         // if true, use the only structure of M
    const GrB_Matrix A,             // input matrix
    const GrB_Matrix B,             // input matrix
    const GrB_Semiring semiring,    // semiring that defines C=A*B
    const bool flipxy,              // if true, do z=fmult(b,a) vs fmult(a,b)
    GB_Context Context
) ;

GrB_Info GB_AxB_dot3_slice
(
    // output:
    GB_task_struct **p_TaskList,    // array of structs, of size max_ntasks
    size_t *p_TaskList_size,        // size of TaskList
    int *p_ntasks,                  // # of tasks constructed
    int *p_nthreads,                // # of threads to use
    // input:
    const GrB_Matrix C,             // matrix to slice
    GB_Context Context
) ;

GrB_Info GB_AxB_dot3_one_slice
(
    // output:
    GB_task_struct **p_TaskList,    // array of structs, of size max_ntasks
    size_t *p_TaskList_size,        // size of TaskList
    int *p_ntasks,                  // # of tasks constructed
    int *p_nthreads,                // # of threads to use
    // input:
    const GrB_Matrix M,             // matrix to slice
    GB_Context Context
) ;

GrB_Info GB_AxB_dot4                // C+=A'*B, dot product method
(
    GrB_Matrix C,                   // input/output matrix, must be dense
    const GrB_Matrix A,             // input matrix
    const GrB_Matrix B,             // input matrix
    const GrB_Semiring semiring,    // semiring that defines C+=A*B
    const bool flipxy,              // if true, do z=fmult(b,a) vs fmult(a,b)
    bool *done_in_place,            // if true, dot4 has computed the result
    GB_Context Context
) ;

GrB_Info GB_bitmap_expand_to_hyper
(
    // input/output:
    GrB_Matrix C,
    // input
    int64_t cvlen_final,
    int64_t cvdim_final,
    GrB_Matrix A,
    GrB_Matrix B,
    GB_Context Context
) ;

//------------------------------------------------------------------------------
// GB_AxB_dot4_control: determine if the dot4 method should be used
//------------------------------------------------------------------------------

// C += A'*B where C is modified in-place. C may be iso on input but dot4
// does not handle the case where C is iso on output.  C must be as-if-full
// on input, and remains so on output.

static inline bool GB_AxB_dot4_control
(
    const bool C_out_iso,       // true if C is iso on output; must be false
                                // to use dot4
    const GrB_Matrix C_in,      // must be present and as-if-full to use dot4
    const GrB_Matrix M,         // must be NULL to use dot4
    const bool Mask_comp,       // must be false to use dot4
    const GrB_BinaryOp accum,   // accum must match the monoid
    const GrB_Semiring semiring
)
{
    return (!C_out_iso && C_in != NULL && GB_as_if_full (C_in)
        && (M == NULL) && (!Mask_comp) && (accum != NULL)
        && (accum == semiring->add->op) && (C_in->type == accum->ztype)) ;
}

//------------------------------------------------------------------------------
// GB_AxB_dot3_control: determine if the dot3 method should be used
//------------------------------------------------------------------------------

// C<M>=A'*B where M is sparse or hypersparse, and not complemented

static inline bool GB_AxB_dot3_control
(
    const GrB_Matrix M,
    const bool Mask_comp
)
{
    return (M != NULL && !Mask_comp &&
        (GB_IS_SPARSE (M) || GB_IS_HYPERSPARSE (M))) ;
}

//------------------------------------------------------------------------------
// GB_AxB_dot2_control: determine if the dot2 method should be used
//------------------------------------------------------------------------------

// C=A'*B, C<M>=A'*B, or C<!M>=A'*B where C is constructed in bitmap format.
// C must be small and likely very dense.

bool GB_AxB_dot2_control  // true: use dot2, false: use saxpy
(
    const GrB_Matrix A,
    const GrB_Matrix B,
    GB_Context Context
) ;

//------------------------------------------------------------------------------
// GB_iso_AxB: determine if C=A*B results in an iso matrix C
//------------------------------------------------------------------------------

bool GB_iso_AxB             // C = A*B, return true if C is iso
(
    // output
    GB_void *restrict c,    // output scalar of iso array
    // input
    GrB_Matrix A,           // input matrix
    GrB_Matrix B,           // input matrix
    uint64_t n,             // inner dimension of the matrix multiply
    GrB_Semiring semiring,  // semiring
    bool flipxy,            // true if z=fmult(b,a), false if z=fmult(a,b)
    bool ignore_monoid      // rowscale and colscale do not use the monoid
) ;

//------------------------------------------------------------------------------
// GB_AxB_adotb_meta_control: determine method for C=A'*B
//------------------------------------------------------------------------------

void GB_AxB_meta_adotb_control
(
    // output:
    int *axb_method,
    // input:
    const GrB_Matrix C_in,
    const GrB_Matrix M,
    bool Mask_comp,
    const GrB_Matrix A,
    const GrB_Matrix B,
    const GrB_BinaryOp accum,
    const GrB_Semiring semiring,    // semiring that defines C=A*B
    bool flipxy,
    bool can_do_in_place,
    bool allow_scale,
    bool B_is_diagonal,
    GrB_Desc_Value AxB_method,
    GB_Context Context
) ;

// return value of axb_method from GB_AxB_meta_adotb_control
#define GB_USE_ROWSCALE 0
#define GB_USE_COLSCALE 1
#define GB_USE_DOT      2
#define GB_USE_SAXPY    3

#endif