1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
|
//------------------------------------------------------------------------------
// GB_pslice: partition Ap for a set of tasks
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// Ap [0..n] is an array with monotonically increasing entries. This function
// slices Ap so that each chunk has the same number of total values of its
// entries. Ap can be A->p for a matrix and then n = A->nvec. Or it can be
// the work needed for computing each vector of a matrix (see GB_ewise_slice
// and GB_subref_slice, for example).
// If Ap is NULL then the matrix A (not provided here) is full or bitmap,
// which this function handles (Ap is implicit).
#include "GB.h"
//------------------------------------------------------------------------------
// GB_pslice_worker: partition Ap for a set of tasks
//------------------------------------------------------------------------------
static void GB_pslice_worker
(
int64_t *restrict Slice, // size ntasks+1
const int64_t *restrict Ap, // array size n+1
int tlo, // assign to Slice [(tlo+1):(thi-1)]
int thi
)
{
//--------------------------------------------------------------------------
// check inputs
//--------------------------------------------------------------------------
#ifdef GB_DEBUG
ASSERT (Ap != NULL) ;
ASSERT (Slice != NULL) ;
ASSERT (0 <= tlo && tlo < thi - 1) ;
for (int t = tlo+1 ; t <= thi-1 ; t++)
{
ASSERT (Slice [t] == -1) ;
}
#endif
//--------------------------------------------------------------------------
// assign work to Slice [(tlo+1):(thi-1)]
//--------------------------------------------------------------------------
// klo = Slice [tlo] and khi = Slice [thi] are defined on input, where
// tlo < thi - 1. This determines the task boundaries for tasks
// tlo+1 to thi-1, which defines Slice [(tlo+1):(thi-1)].
int64_t klo = Slice [tlo] ;
int64_t khi = Slice [thi] ; ASSERT (0 <= klo && klo <= khi) ;
int64_t p1 = Ap [klo] ;
int64_t p2 = Ap [khi] ; ASSERT (p1 <= p2) ;
if (p1 == p2 || klo == khi)
{
//----------------------------------------------------------------------
// no work is left so simply fill in with empty tasks
//----------------------------------------------------------------------
int64_t k = klo ;
for (int64_t t = tlo+1 ; t <= thi-1 ; t++)
{
Slice [t] = k ;
}
}
else // p1 < p2 && klo < khi
{
//----------------------------------------------------------------------
// find task t that evenly partitions the work p1:p2 to tasks tlo:thi
//----------------------------------------------------------------------
int64_t k = (klo + khi) / 2 ; ASSERT (klo <= k && k <= khi) ;
int64_t p = Ap [k] ; ASSERT (p1 <= p && p <= p2) ;
double ntasks = thi - tlo ;
double ratio = (((double) (p - p1)) / ((double) (p2 - p1))) ;
int t = tlo + (int) floor (ratio * ntasks) ;
t = GB_IMAX (t, tlo+1) ;
t = GB_IMIN (t, thi-1) ; ASSERT (tlo < t && t < thi) ;
//----------------------------------------------------------------------
// assign work to task t
//----------------------------------------------------------------------
ASSERT (Slice [t] == -1) ;
Slice [t] = k ;
//----------------------------------------------------------------------
// recursively partition for tasks (tlo+1):(t-1) and (t+1):(thi-1)
//----------------------------------------------------------------------
if (tlo < t-1)
{
GB_pslice_worker (Slice, Ap, tlo, t) ;
}
if (t < thi-1)
{
GB_pslice_worker (Slice, Ap, t, thi) ;
}
}
}
//------------------------------------------------------------------------------
// GB_pslice: partition Ap for a set of tasks
//------------------------------------------------------------------------------
GB_PUBLIC
void GB_pslice // slice Ap
(
int64_t *restrict Slice, // size ntasks+1
const int64_t *restrict Ap, // array size n+1 (NULL if full or bitmap)
const int64_t n,
const int ntasks, // # of tasks
const bool perfectly_balanced
)
{
//--------------------------------------------------------------------------
// check inputs
//--------------------------------------------------------------------------
ASSERT (Slice != NULL) ;
#ifdef GB_DEBUG
for (int taskid = 0 ; taskid <= ntasks ; taskid++)
{
Slice [taskid] = -1 ;
}
#endif
//--------------------------------------------------------------------------
// slice the work
//--------------------------------------------------------------------------
if (Ap == NULL)
{
//----------------------------------------------------------------------
// A is full or bitmap: slice 0:n equally for all tasks
//----------------------------------------------------------------------
GB_eslice (Slice, n, ntasks) ;
}
else
{
//----------------------------------------------------------------------
// A is sparse or hypersparse
//----------------------------------------------------------------------
if (n == 0 || ntasks <= 1 || Ap [n] == 0)
{
// matrix is empty, or a single thread is used
memset ((void *) Slice, 0, ntasks * sizeof (int64_t)) ;
Slice [ntasks] = n ;
}
else
{
// slice Ap by # of entries
Slice [0] = 0 ;
Slice [ntasks] = n ;
if (perfectly_balanced)
{
// this method is costly, and should only be used if the
// work is to be perfectly balanced (in particular, when there
// is just one task per thread, with static scheduling)
const double work = (double) (Ap [n]) ;
int64_t k = 0 ;
for (int taskid = 1 ; taskid < ntasks ; taskid++)
{
// binary search to find k so that Ap [k] == (taskid*work) /
// ntasks. The exact value will not typically not be found;
// just pick what the binary search comes up with.
int64_t wtask = (int64_t) GB_PART (taskid, work, ntasks) ;
int64_t pright = n ;
GB_TRIM_BINARY_SEARCH (wtask, Ap, k, pright) ;
Slice [taskid] = k ;
}
}
else
{
// this is much faster, and results in good load balancing if
// there is more than one task per thread, and dynamic
// scheduling is used.
GB_pslice_worker (Slice, Ap, 0, ntasks) ;
}
}
}
//--------------------------------------------------------------------------
// check result
//--------------------------------------------------------------------------
#ifdef GB_DEBUG
ASSERT (Slice [0] == 0) ;
ASSERT (Slice [ntasks] == n) ;
for (int taskid = 0 ; taskid < ntasks ; taskid++)
{
ASSERT (Slice [taskid] <= Slice [taskid+1]) ;
}
#endif
}
|