File: GB_reduce_to_vector.c

package info (click to toggle)
suitesparse-graphblas 7.4.0%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 67,112 kB
  • sloc: ansic: 1,072,243; cpp: 8,081; sh: 512; makefile: 506; asm: 369; python: 125; awk: 10
file content (164 lines) | stat: -rw-r--r-- 6,498 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
//------------------------------------------------------------------------------
// GB_reduce_to_vector: reduce a matrix to a vector using a monoid
//------------------------------------------------------------------------------

// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

//------------------------------------------------------------------------------

// C<M> = accum (C,reduce(A)) where C is n-by-1.  Reduces a matrix A or A'
// to a vector.

#define GB_FREE_ALL GB_Matrix_free (&B) ;

#include "GB_reduce.h"
#include "GB_binop.h"
#include "GB_mxm.h"
#include "GB_get_mask.h"
#include "GB_Semiring_new.h"

GrB_Info GB_reduce_to_vector        // C<M> = accum (C,reduce(A))
(
    GrB_Matrix C,                   // input/output for results, size n-by-1
    const GrB_Matrix M_in,          // optional M for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(C,T)
    const GrB_Monoid monoid,        // reduce monoid for T=reduce(A)
    const GrB_Matrix A,             // first input:  matrix A
    const GrB_Descriptor desc,      // descriptor for C, M, and A
    GB_Context Context
)
{

    //--------------------------------------------------------------------------
    // check inputs
    //--------------------------------------------------------------------------

    struct GB_Matrix_opaque B_header ;
    GrB_Matrix B = NULL ;

    // C may be aliased with M and/or A
    GB_RETURN_IF_NULL_OR_FAULTY (C) ;
    GB_RETURN_IF_FAULTY (M_in) ;
    GB_RETURN_IF_FAULTY_OR_POSITIONAL (accum) ;
    GB_RETURN_IF_NULL_OR_FAULTY (monoid) ;
    GB_RETURN_IF_NULL_OR_FAULTY (A) ;
    GB_RETURN_IF_FAULTY (desc) ;

    ASSERT_MATRIX_OK (C, "C input for reduce-to-vector", GB0) ;
    ASSERT_MATRIX_OK_OR_NULL (M_in, "M_in for reduce-to-vector", GB0) ;
    ASSERT_BINARYOP_OK_OR_NULL (accum, "accum for reduce-to-vector", GB0) ;
    ASSERT_MONOID_OK (monoid, "monoid for reduce-to-vector", GB0) ;
    ASSERT_MATRIX_OK (A, "A input for reduce-to-vector", GB0) ;
    ASSERT_DESCRIPTOR_OK_OR_NULL (desc, "desc for reduce-to-vector", GB0) ;
    ASSERT (GB_VECTOR_OK (C)) ;
    ASSERT (GB_IMPLIES (M_in != NULL, GB_VECTOR_OK (M_in))) ;

    // get the descriptor
    GB_GET_DESCRIPTOR (info, desc, C_replace, Mask_comp, Mask_struct,
        A_transpose, xx1, xx2, do_sort) ;

    // get the mask
    GrB_Matrix M = GB_get_mask (M_in, &Mask_comp, &Mask_struct) ;

    // check domains and dimensions for C<M> = accum (C,T)
    GrB_Type ztype = monoid->op->ztype ;
    GB_OK (GB_compatible (C->type, C, M, Mask_struct, accum, ztype, Context)) ;

    // T = reduce (T,A) must be compatible
    if (!GB_Type_compatible (A->type, ztype))
    { 
        GB_ERROR (GrB_DOMAIN_MISMATCH,
            "Incompatible type for reduction monoid z=%s(x,y):\n"
            "input matrix A of type [%s]\n"
            "cannot be typecast to reduction monoid of type [%s]",
            monoid->op->name, A->type->name, ztype->name) ;
    }

    // check the dimensions
    int64_t n = GB_NROWS (C) ;
    if (A_transpose)
    {
        if (n != GB_NCOLS (A))
        { 
            GB_ERROR (GrB_DIMENSION_MISMATCH,
                "w=reduce(A'):  length of w is " GBd ";\n"
                "it must match the number of columns of A, which is " GBd ".",
                n, GB_NCOLS (A)) ;
        }
    }
    else
    {
        if (n != GB_NROWS(A))
        { 
            GB_ERROR (GrB_DIMENSION_MISMATCH,
                "w=reduce(A):  length of w is " GBd ";\n"
                "it must match the number of rows of A, which is " GBd ".",
                n, GB_NROWS (A)) ;
        }
    }

    // quick return if an empty mask is complemented
    GB_RETURN_IF_QUICK_MASK (C, C_replace, M, Mask_comp, Mask_struct) ;

    //--------------------------------------------------------------------------
    // create B as full iso vector
    //--------------------------------------------------------------------------

    // B is constructed with a static header in O(1) time and space, even
    // though it is m-by-1.  It contains no dynamically-allocated content and
    // does not need to be freed.
    int64_t m = A_transpose ? GB_NROWS (A) : GB_NCOLS (A) ;
    GB_CLEAR_STATIC_HEADER (B, &B_header) ;
    info = GB_new (&B, // full, existing header
        ztype, m, 1, GB_Ap_null, true, GxB_FULL, GB_NEVER_HYPER, 1, Context) ;
    ASSERT (info == GrB_SUCCESS) ;
    B->magic = GB_MAGIC ;
    B->iso = true ;             // OK: B is a temporary matrix; no burble
    size_t zsize = ztype->size ;
    GB_void bscalar [GB_VLA(zsize)] ;
    memset (bscalar, 0, zsize) ;
    B->x = bscalar ;
    B->x_shallow = true ;
    B->x_size = zsize ;
    ASSERT_MATRIX_OK (B, "B for reduce-to-vector", GB0) ;

    //--------------------------------------------------------------------------
    // create the FIRST_ZTYPE binary operator
    //--------------------------------------------------------------------------

    // Note the function pointer is NULL; it is not needed by FIRST.  The
    // function defn is also NULL.  In the JIT, the FIRST multiply operator is
    // a simple assignment so there's no need for a function definition.

    struct GB_BinaryOp_opaque op_header ;
    GrB_BinaryOp op = &op_header ;
    info = GB_binop_new (op, NULL, ztype, ztype, ztype, "1st", NULL,
        GB_FIRST_binop_code) ;

    // GB_binop_new cannot fail since it doesn't allocate the function defn.
    ASSERT (info == GrB_SUCCESS) ;
    ASSERT_BINARYOP_OK (op, "op for reduce-to-vector", GB0) ;

    //--------------------------------------------------------------------------
    // create the REDUCE_FIRST_ZTYPE semiring
    //--------------------------------------------------------------------------

    struct GB_Semiring_opaque semiring_header ;
    GrB_Semiring semiring = &semiring_header ;
    semiring->header_size = 0 ;
    info = GB_Semiring_new (semiring, monoid, op) ;
    ASSERT (info == GrB_SUCCESS) ;
    ASSERT_SEMIRING_OK (semiring, "semiring for reduce-to-vector", GB0) ;

    //--------------------------------------------------------------------------
    // reduce the matrix to a vector via C<M> = accum (C, A*B)
    //--------------------------------------------------------------------------

    info = GB_mxm (C, C_replace, M, Mask_comp, Mask_struct, accum,
        semiring, A, A_transpose, B, false, false, GxB_DEFAULT, do_sort,
        Context) ;
    GB_FREE_ALL ;
    return (info) ;
}