1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
|
//------------------------------------------------------------------------------
// GB_reduce_to_vector: reduce a matrix to a vector using a monoid
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// C<M> = accum (C,reduce(A)) where C is n-by-1. Reduces a matrix A or A'
// to a vector.
#define GB_FREE_ALL GB_Matrix_free (&B) ;
#include "GB_reduce.h"
#include "GB_binop.h"
#include "GB_mxm.h"
#include "GB_get_mask.h"
#include "GB_Semiring_new.h"
GrB_Info GB_reduce_to_vector // C<M> = accum (C,reduce(A))
(
GrB_Matrix C, // input/output for results, size n-by-1
const GrB_Matrix M_in, // optional M for C, unused if NULL
const GrB_BinaryOp accum, // optional accum for z=accum(C,T)
const GrB_Monoid monoid, // reduce monoid for T=reduce(A)
const GrB_Matrix A, // first input: matrix A
const GrB_Descriptor desc, // descriptor for C, M, and A
GB_Context Context
)
{
//--------------------------------------------------------------------------
// check inputs
//--------------------------------------------------------------------------
struct GB_Matrix_opaque B_header ;
GrB_Matrix B = NULL ;
// C may be aliased with M and/or A
GB_RETURN_IF_NULL_OR_FAULTY (C) ;
GB_RETURN_IF_FAULTY (M_in) ;
GB_RETURN_IF_FAULTY_OR_POSITIONAL (accum) ;
GB_RETURN_IF_NULL_OR_FAULTY (monoid) ;
GB_RETURN_IF_NULL_OR_FAULTY (A) ;
GB_RETURN_IF_FAULTY (desc) ;
ASSERT_MATRIX_OK (C, "C input for reduce-to-vector", GB0) ;
ASSERT_MATRIX_OK_OR_NULL (M_in, "M_in for reduce-to-vector", GB0) ;
ASSERT_BINARYOP_OK_OR_NULL (accum, "accum for reduce-to-vector", GB0) ;
ASSERT_MONOID_OK (monoid, "monoid for reduce-to-vector", GB0) ;
ASSERT_MATRIX_OK (A, "A input for reduce-to-vector", GB0) ;
ASSERT_DESCRIPTOR_OK_OR_NULL (desc, "desc for reduce-to-vector", GB0) ;
ASSERT (GB_VECTOR_OK (C)) ;
ASSERT (GB_IMPLIES (M_in != NULL, GB_VECTOR_OK (M_in))) ;
// get the descriptor
GB_GET_DESCRIPTOR (info, desc, C_replace, Mask_comp, Mask_struct,
A_transpose, xx1, xx2, do_sort) ;
// get the mask
GrB_Matrix M = GB_get_mask (M_in, &Mask_comp, &Mask_struct) ;
// check domains and dimensions for C<M> = accum (C,T)
GrB_Type ztype = monoid->op->ztype ;
GB_OK (GB_compatible (C->type, C, M, Mask_struct, accum, ztype, Context)) ;
// T = reduce (T,A) must be compatible
if (!GB_Type_compatible (A->type, ztype))
{
GB_ERROR (GrB_DOMAIN_MISMATCH,
"Incompatible type for reduction monoid z=%s(x,y):\n"
"input matrix A of type [%s]\n"
"cannot be typecast to reduction monoid of type [%s]",
monoid->op->name, A->type->name, ztype->name) ;
}
// check the dimensions
int64_t n = GB_NROWS (C) ;
if (A_transpose)
{
if (n != GB_NCOLS (A))
{
GB_ERROR (GrB_DIMENSION_MISMATCH,
"w=reduce(A'): length of w is " GBd ";\n"
"it must match the number of columns of A, which is " GBd ".",
n, GB_NCOLS (A)) ;
}
}
else
{
if (n != GB_NROWS(A))
{
GB_ERROR (GrB_DIMENSION_MISMATCH,
"w=reduce(A): length of w is " GBd ";\n"
"it must match the number of rows of A, which is " GBd ".",
n, GB_NROWS (A)) ;
}
}
// quick return if an empty mask is complemented
GB_RETURN_IF_QUICK_MASK (C, C_replace, M, Mask_comp, Mask_struct) ;
//--------------------------------------------------------------------------
// create B as full iso vector
//--------------------------------------------------------------------------
// B is constructed with a static header in O(1) time and space, even
// though it is m-by-1. It contains no dynamically-allocated content and
// does not need to be freed.
int64_t m = A_transpose ? GB_NROWS (A) : GB_NCOLS (A) ;
GB_CLEAR_STATIC_HEADER (B, &B_header) ;
info = GB_new (&B, // full, existing header
ztype, m, 1, GB_Ap_null, true, GxB_FULL, GB_NEVER_HYPER, 1, Context) ;
ASSERT (info == GrB_SUCCESS) ;
B->magic = GB_MAGIC ;
B->iso = true ; // OK: B is a temporary matrix; no burble
size_t zsize = ztype->size ;
GB_void bscalar [GB_VLA(zsize)] ;
memset (bscalar, 0, zsize) ;
B->x = bscalar ;
B->x_shallow = true ;
B->x_size = zsize ;
ASSERT_MATRIX_OK (B, "B for reduce-to-vector", GB0) ;
//--------------------------------------------------------------------------
// create the FIRST_ZTYPE binary operator
//--------------------------------------------------------------------------
// Note the function pointer is NULL; it is not needed by FIRST. The
// function defn is also NULL. In the JIT, the FIRST multiply operator is
// a simple assignment so there's no need for a function definition.
struct GB_BinaryOp_opaque op_header ;
GrB_BinaryOp op = &op_header ;
info = GB_binop_new (op, NULL, ztype, ztype, ztype, "1st", NULL,
GB_FIRST_binop_code) ;
// GB_binop_new cannot fail since it doesn't allocate the function defn.
ASSERT (info == GrB_SUCCESS) ;
ASSERT_BINARYOP_OK (op, "op for reduce-to-vector", GB0) ;
//--------------------------------------------------------------------------
// create the REDUCE_FIRST_ZTYPE semiring
//--------------------------------------------------------------------------
struct GB_Semiring_opaque semiring_header ;
GrB_Semiring semiring = &semiring_header ;
semiring->header_size = 0 ;
info = GB_Semiring_new (semiring, monoid, op) ;
ASSERT (info == GrB_SUCCESS) ;
ASSERT_SEMIRING_OK (semiring, "semiring for reduce-to-vector", GB0) ;
//--------------------------------------------------------------------------
// reduce the matrix to a vector via C<M> = accum (C, A*B)
//--------------------------------------------------------------------------
info = GB_mxm (C, C_replace, M, Mask_comp, Mask_struct, accum,
semiring, A, A_transpose, B, false, false, GxB_DEFAULT, do_sort,
Context) ;
GB_FREE_ALL ;
return (info) ;
}
|