1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
|
//------------------------------------------------------------------------------
// GB_reshape: reshape a matrix into another matrix
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// If the input matrix is nrows-by-ncols, and the size of the newly-created
// matrix C is nrows_new-by-ncols_new, then nrows*ncols must equal
// nrows_new*ncols_new.
#include "GB.h"
#include "GB_reshape.h"
#include "GB_transpose.h"
#include "GB_ek_slice.h"
#include "GB_build.h"
#define GB_FREE_WORKSPACE \
{ \
GB_WERK_POP (T_ek_slicing, int64_t) ; \
GB_FREE (&I_work, I_work_size) ; \
GB_FREE (&J_work, J_work_size) ; \
GB_FREE (&S_work, S_work_size) ; \
if (T != A && T != C) \
{ \
GB_Matrix_free (&T) ; \
} \
}
#define GB_FREE_ALL \
{ \
GB_FREE_WORKSPACE ; \
if (Chandle == NULL) \
{ \
GB_phybix_free (A) ; \
} \
else \
{ \
GB_Matrix_free (&C) ; \
} \
}
GrB_Info GB_reshape // reshape a GrB_Matrix into another GrB_Matrix
(
// output, if not in-place:
GrB_Matrix *Chandle, // output matrix, in place if Chandle == NULL
// input, or input/output:
GrB_Matrix A, // input matrix, or input/output if in-place
// input:
bool by_col, // true if reshape by column, false if by row
int64_t nrows_new, // number of rows of C
int64_t ncols_new, // number of columns of C
GB_Context Context
)
{
//--------------------------------------------------------------------------
// check inputs
//--------------------------------------------------------------------------
GrB_Info info ;
ASSERT_MATRIX_OK (A, "A for reshape", GB0) ;
int64_t *I_work = NULL, *J_work = NULL ;
GB_void *S_work = NULL, *S_input = NULL ;
size_t I_work_size = 0, J_work_size = 0, S_work_size = 0 ;
GB_WERK_DECLARE (T_ek_slicing, int64_t) ;
GrB_Matrix C = NULL, T = NULL ;
bool in_place = (Chandle == NULL) ;
if (!in_place)
{
(*Chandle) = NULL ;
}
GrB_Index matrix_size, s ;
int64_t nrows_old = GB_NROWS (A) ;
int64_t ncols_old = GB_NCOLS (A) ;
bool ok = GB_int64_multiply (&matrix_size, nrows_old, ncols_old) ;
if (!ok)
{
// problem too large
return (GrB_OUT_OF_MEMORY) ;
}
ok = GB_int64_multiply (&s, nrows_new, ncols_new) ;
if (!ok || s != matrix_size)
{
// dimensions are invalid
return (GrB_DIMENSION_MISMATCH) ;
}
//--------------------------------------------------------------------------
// finish any pending work, and transpose the input matrix if needed
//--------------------------------------------------------------------------
GB_MATRIX_WAIT (A) ;
GrB_Type type = A->type ;
bool A_is_csc = A->is_csc ;
if (A_is_csc != by_col)
{
// transpose the input matrix
if (in_place)
{
// transpose A in-place
GB_OK (GB_transpose_in_place (A, by_col, Context)) ;
T = A ;
}
else
{
// T = A'
GB_OK (GB_new (&T, // new header
type, A->vdim, A->vlen, GB_Ap_null, by_col, GxB_AUTO_SPARSITY,
GB_Global_hyper_switch_get ( ), 0, Context)) ;
GB_OK (GB_transpose_cast (T, type, by_col, A, false, Context)) ;
// now T can be reshaped in-place to construct C
in_place = true ;
}
}
else
{
// use T = A as-is, and reshape it either in-place or not in-place
T = A ;
}
// T is now in the format required for the reshape
ASSERT_MATRIX_OK (T, "T for reshape", GB0) ;
ASSERT (T->is_csc == by_col) ;
//--------------------------------------------------------------------------
// determine the dimensions of C
//--------------------------------------------------------------------------
int64_t vlen_new, vdim_new ;
bool T_is_csc = T->is_csc ;
if (T_is_csc)
{
vlen_new = nrows_new ;
vdim_new = ncols_new ;
}
else
{
vlen_new = ncols_new ;
vdim_new = nrows_new ;
}
//--------------------------------------------------------------------------
// C = reshape (T), keeping the same format (by_col)
//--------------------------------------------------------------------------
if (GB_IS_FULL (T) || GB_IS_BITMAP (T))
{
//----------------------------------------------------------------------
// T and C are both full or both bitmap
//----------------------------------------------------------------------
if (in_place)
{
// move T into C
C = T ;
T = NULL ;
}
else
{
// copy T into C
GB_OK (GB_dup (&C, T, Context)) ;
}
// change the size of C
C->vlen = vlen_new ;
C->vdim = vdim_new ;
C->nvec = vdim_new ;
C->nvec_nonempty = (vlen_new == 0) ? 0 : vdim_new ;
}
else
{
//----------------------------------------------------------------------
// sparse/hypersparse case
//----------------------------------------------------------------------
int64_t nvals = GB_nnz (T) ;
int64_t *Tp = T->p ;
int64_t *Th = T->h ;
int64_t *Ti = T->i ;
bool T_iso = T->iso ;
int64_t tvlen = T->vlen ;
bool T_jumbled = T->jumbled ;
GB_GET_NTHREADS_MAX (nthreads_max, chunk, Context) ;
int T_nthreads, T_ntasks ;
GB_SLICE_MATRIX (T, 1, chunk) ;
//----------------------------------------------------------------------
// allocate output and workspace
//----------------------------------------------------------------------
if (in_place)
{
//------------------------------------------------------------------
// Remove T->i and T->x from T; these become I_work and S_work
//------------------------------------------------------------------
// remove T->i from T; it becomes I_work
I_work = T->i ; I_work_size = T->i_size ;
T->i = NULL ; T->i_size = 0 ;
// remove T->x from T; it becomes S_work
S_work = T->x ; S_work_size = T->x_size ;
T->x = NULL ; T->x_size = 0 ;
S_input = NULL ;
// move T into C
C = T ;
T = NULL ;
}
else
{
//------------------------------------------------------------------
// create a new matrix C for GB_builder and allocate I_work
//------------------------------------------------------------------
// create the output matrix (just the header; no content)
GB_OK (GB_new (&C, // new header
type, vlen_new, vdim_new, GB_Ap_null, T_is_csc,
GxB_AUTO_SPARSITY, GB_Global_hyper_switch_get ( ), 0,
Context)) ;
// allocate new space for the future C->i
I_work = GB_MALLOC (nvals, int64_t, &I_work_size) ;
if (I_work == NULL)
{
// out of memory
GB_FREE_ALL ;
return (GrB_OUT_OF_MEMORY) ;
}
// use T->x as S_input to GB_builder, which is not modified
S_input = T->x ;
}
if (vdim_new > 1)
{
// J_work is not needed if vdim_new == 1
J_work = GB_MALLOC (nvals, int64_t, &J_work_size) ;
if (J_work == NULL)
{
// out of memory
GB_FREE_ALL ;
return (GrB_OUT_OF_MEMORY) ;
}
}
//----------------------------------------------------------------------
// construct the new indices
//----------------------------------------------------------------------
int tid ;
if (vdim_new == 1)
{
//------------------------------------------------------------------
// C is a single vector: no J_work is needed, and new index is 1D
//------------------------------------------------------------------
#pragma omp parallel for num_threads(T_nthreads) schedule(static)
for (tid = 0 ; tid < T_ntasks ; tid++)
{
int64_t kfirst = kfirst_Tslice [tid] ;
int64_t klast = klast_Tslice [tid] ;
for (int64_t k = kfirst ; k <= klast ; k++)
{
int64_t jold = GBH (Th, k) ;
int64_t pT_start, pT_end ;
GB_get_pA (&pT_start, &pT_end, tid, k,
kfirst, klast, pstart_Tslice, Tp, tvlen) ;
for (int64_t p = pT_start ; p < pT_end ; p++)
{
int64_t iold = Ti [p] ;
// convert (iold,jold) to a 1D index
int64_t index_1d = iold + jold * tvlen ;
// save the new 1D index
I_work [p] = index_1d ;
}
}
}
}
else
{
//------------------------------------------------------------------
// C is a matrix
//------------------------------------------------------------------
#pragma omp parallel for num_threads(T_nthreads) schedule(static)
for (tid = 0 ; tid < T_ntasks ; tid++)
{
int64_t kfirst = kfirst_Tslice [tid] ;
int64_t klast = klast_Tslice [tid] ;
for (int64_t k = kfirst ; k <= klast ; k++)
{
int64_t jold = GBH (Th, k) ;
int64_t pT_start, pT_end ;
GB_get_pA (&pT_start, &pT_end, tid, k,
kfirst, klast, pstart_Tslice, Tp, tvlen) ;
for (int64_t p = pT_start ; p < pT_end ; p++)
{
int64_t iold = Ti [p] ;
// convert (iold,jold) to a 1D index
int64_t index_1d = iold + jold * tvlen ;
// convert the 1D index to the 2d index: (inew,jnew)
int64_t inew = index_1d % vlen_new ;
int64_t jnew = (index_1d - inew) / vlen_new ;
// save the new indices
I_work [p] = inew ;
J_work [p] = jnew ;
}
}
}
}
//----------------------------------------------------------------------
// free the old C->p and C->h, if constructing C in place
//----------------------------------------------------------------------
if (in_place)
{
GB_phybix_free (C) ;
}
//----------------------------------------------------------------------
// build the output matrix C
//----------------------------------------------------------------------
GB_OK (GB_builder (
C, // output matrix
type, // same type as T
vlen_new, // new vlen
vdim_new, // new vdim
T_is_csc, // same format as T
&I_work, // transplanted into C->i
&I_work_size,
&J_work, // freed when done
&J_work_size,
&S_work, // array of values; transplanted into C->x in-place
&S_work_size,
!T_jumbled, // indices may be jumbled on input
true, // no duplicates exist
nvals, // number of entries in T and C
true, // C is a matrix
NULL, // I_input is not used
NULL, // J_input is not used
S_input, // S_input is used if not in-place; NULL if in-place
T_iso, // true if T and C are iso-valued
nvals, // number of entries in T and C
NULL, // no dup operator
type, // type of S_work and S_input
true, // burble is allowed
Context
)) ;
ASSERT (I_work == NULL) ; // transplanted into C->i
ASSERT (J_work == NULL) ; // freed by GB_builder
ASSERT (S_work == NULL) ; // freed by GB_builder
}
//--------------------------------------------------------------------------
// transpose C if needed, to change its format to match the format of A
//--------------------------------------------------------------------------
ASSERT_MATRIX_OK (C, "C for reshape before transpose", GB0) ;
ASSERT (C->is_csc == T_is_csc) ;
if (A_is_csc != T_is_csc)
{
GB_OK (GB_transpose_in_place (C, A_is_csc, Context)) ;
}
//--------------------------------------------------------------------------
// free workspace, conform C, and return results
//--------------------------------------------------------------------------
GB_FREE_WORKSPACE ;
GB_OK (GB_conform (C, Context)) ;
ASSERT_MATRIX_OK (C, "C result for reshape", GB0) ;
if (Chandle != NULL)
{
(*Chandle) = C ;
}
return (GrB_SUCCESS) ;
}
|