1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
|
//------------------------------------------------------------------------------
// GB_slice_vector: slice a vector for GB_add, GB_emult, and GB_mask
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// A(:,kA) and B(:,kB) are two long vectors that will be added with GB_add,
// GB_emult, or GB_mask, and the work to compute them needs to be split into
// multiple tasks. They represent the same vector index j, for:
// C(:,j) = A(:,j) + B(:,j) in GB_add
// C(:,j) = A(:,j) .* B(:,j) in GB_emult
// C(:,j)<M(:,j)> = B(:,j) in GB_mask; A is passed in as the input C
// union (A->h, B->h) in GB_add_phase0.
// The vector index j is not needed here. The vectors kA and kB are not
// required, either; just the positions where the vectors appear in A and B
// (pA_start, pA_end, pB_start, and pB_end).
// The inputs Mi, Ai, and Bi must be sorted on input.
// This method finds i so that nnz (A (i:end,kA)) + nnz (B (i:end,kB)) is
// roughly equal to target_work. The entries in A(i:end,kA) start at position
// pA in Ai and Ax, and the entries in B(i:end,kB) start at position pB in Bi
// and Bx. Once the work is split, pM is found for M(i:end,kM), if the mask M
// is present.
// The lists Mi, Ai, and Bi can also be any sorted integer array. This is used
// by GB_add_phase0 to construct the set union of A->h and B->h. In this case,
// pA_start and pB_start are both zero, and pA_end and pB_end are A->nvec and
// B->nvec, respectively.
// If n = A->vlen = B->vlen, anz = nnz (A (:,kA)), and bnz = nnz (B (:,kB)),
// then the total time taken by this function is O(log(n)*(log(anz)+log(bnz))),
// or at most O((log(n)^2)).
// The input matrices M, A, and B are not present here, except for M->i,
// A->i, and B->i if they are sparse or hypersparse. They cannot be jumbled.
// M, A, and B can have any sparsity structure. If bitmap or full, their
// corresponding [A,B,M]->i arrays are NULL.
#include "GB.h"
void GB_slice_vector
(
// output: return i, pA, and pB
int64_t *p_i, // work starts at A(i,kA) and B(i,kB)
int64_t *p_pM, // M(i:end,kM) starts at pM
int64_t *p_pA, // A(i:end,kA) starts at pA
int64_t *p_pB, // B(i:end,kB) starts at pB
// input:
const int64_t pM_start, // M(:,kM) starts at pM_start in Mi,Mx
const int64_t pM_end, // M(:,kM) ends at pM_end-1 in Mi,Mx
const int64_t *restrict Mi, // indices of M (or NULL)
const int64_t pA_start, // A(:,kA) starts at pA_start in Ai,Ax
const int64_t pA_end, // A(:,kA) ends at pA_end-1 in Ai,Ax
const int64_t *restrict Ai, // indices of A (or NULL)
const int64_t pB_start, // B(:,kB) starts at pB_start in Bi,Bx
const int64_t pB_end, // B(:,kB) ends at pB_end-1 in Bi,Bx
const int64_t *restrict Bi, // indices of B (or NULL)
const int64_t vlen, // A->vlen and B->vlen
const double target_work // target work
)
{
//--------------------------------------------------------------------------
// check inputs
//--------------------------------------------------------------------------
ASSERT (p_pA != NULL && p_pB != NULL) ;
//--------------------------------------------------------------------------
// find i, pA, and pB for the start of this task
//--------------------------------------------------------------------------
// search for index i in the range ileft:iright, inclusive
int64_t ileft = 0 ;
int64_t iright = vlen-1 ;
int64_t i = 0 ;
const int64_t aknz = pA_end - pA_start ;
const int64_t bknz = pB_end - pB_start ;
const int64_t mknz = pM_end - pM_start ; // zero if M not present
const bool a_empty = (aknz == 0) ;
const bool b_empty = (bknz == 0) ;
const bool m_empty = (mknz == 0) ;
int64_t pM = (m_empty) ? -1 : pM_start ;
int64_t pA = (a_empty) ? -1 : pA_start ;
int64_t pB = (b_empty) ? -1 : pB_start ;
while (ileft < iright)
{
//----------------------------------------------------------------------
// find the index i in the middle of ileft:iright
//----------------------------------------------------------------------
i = (ileft + iright) >> 1 ;
//----------------------------------------------------------------------
// find where i appears in A(:,kA)
//----------------------------------------------------------------------
if (a_empty)
{
// Ai is empty so i does not appear
pA = -1 ;
}
else if (aknz == vlen)
{
// A(:,kA) is dense (bitmap, full, or all entries present)
// no need for a binary search
pA = pA_start + i ;
ASSERT (GBI (Ai, pA, vlen) == i) ;
}
else
{
// Ai is an explicit integer list, Ai [pA_start:pA_end-1]
ASSERT (aknz > 0) ;
pA = pA_start ;
bool afound ;
int64_t apright = pA_end - 1 ;
GB_SPLIT_BINARY_SEARCH (i, Ai, pA, apright, afound) ;
ASSERT (GB_IMPLIES (afound, GBI (Ai, pA, vlen) == i)) ;
ASSERT (pA_start <= pA && pA <= pA_end) ;
}
ASSERT (GB_IMPLIES (pA > pA_start && pA < pA_end,
(GBI (Ai, pA-1, vlen) < i))) ;
ASSERT (GB_IMPLIES (pA >= pA_start && pA < pA_end,
(GBI (Ai, pA, vlen) >= i ))) ;
// Ai has been split. If afound is false:
// Ai [pA_start : pA-1] < i
// Ai [pA : pA_end-1] > i
// If afound is true:
// Ai [pA_start : pA-1] < i
// Ai [pA : pA_end-1] >= i
//
// in both cases, if i is chosen as the breakpoint, then the
// subtask starts at index i, and position pA in Ai,Ax.
// if A(:,kA) is empty, then pA is -1
//----------------------------------------------------------------------
// find where i appears in B(:,kB)
//----------------------------------------------------------------------
if (b_empty)
{
// B(:,kB) is empty so i does not appear
pB = -1 ;
}
else if (bknz == vlen)
{
// B(:,kB) is dense (bitmap, full, or all entries present)
// no need for a binary search
pB = pB_start + i ;
ASSERT (GBI (Bi, pB, vlen) == i) ;
}
else
{
// B(:,kB) is sparse, and not empty
ASSERT (bknz > 0) ;
ASSERT (Bi != NULL) ;
pB = pB_start ;
bool bfound ;
int64_t bpright = pB_end - 1 ;
GB_SPLIT_BINARY_SEARCH (i, Bi, pB, bpright, bfound) ;
ASSERT (pB_start <= pB && pB <= pB_end) ;
}
ASSERT (GB_IMPLIES (pB > pB_start && pB < pB_end,
(GBI (Bi, pB-1, vlen) < i))) ;
ASSERT (GB_IMPLIES (pB >= pB_start && pB < pB_end,
(GBI (Bi, pB, vlen) >= i ))) ;
// Bi has been split. If bfound is false:
// Bi [pB_start : pB-1] < i
// Bi [pB : pB_end-1] > i
// If bfound is true:
// Bi [pB_start : pB-1] < i
// Bi [pB : pB_end-1] >= i
//
// in both cases, if i is chosen as the breakpoint, then the
// subtask starts at index i, and position pB in Bi,Bx.
// if B(:,kB) is empty, then pB is -1
//----------------------------------------------------------------------
// determine if the subtask is near the target task size
//----------------------------------------------------------------------
double work = (a_empty ? 0 : (pA_end - pA))
+ (b_empty ? 0 : (pB_end - pB)) ;
if (work < 0.9999 * target_work)
{
//------------------------------------------------------------------
// work is too low
//------------------------------------------------------------------
// work is too low, so i is too high.
// Keep searching in the range (ileft:i), inclusive.
iright = i ;
}
else if (work > 1.0001 * target_work)
{
//------------------------------------------------------------------
// work is too high
//------------------------------------------------------------------
// work is too high, so i is too low.
// Keep searching in the range (i+1):iright, inclusive.
ileft = i + 1 ;
}
else
{
//------------------------------------------------------------------
// work is about right; use this result.
//------------------------------------------------------------------
// return i, pA, and pB as the start of this task.
ASSERT (0 <= i && i <= vlen) ;
ASSERT (pA == -1 || (pA_start <= pA && pA <= pA_end)) ;
ASSERT (pB == -1 || (pB_start <= pB && pB <= pB_end)) ;
break ;
}
}
//--------------------------------------------------------------------------
// find where i appears in M(:,kM)
//--------------------------------------------------------------------------
if (m_empty)
{
pM = -1 ;
}
else if (mknz == vlen)
{
// M(:,kM) is dense (bitmap, full, or all entries present)
// no need for a binary search
pM = pM_start + i ;
ASSERT (GBI (Mi, pM, vlen) == i) ;
}
else
{
// M(:,kM) is sparse, and not empty
ASSERT (mknz > 0) ;
ASSERT (Mi != NULL) ;
pM = pM_start ;
bool mfound ;
int64_t mpright = pM_end - 1 ;
GB_SPLIT_BINARY_SEARCH (i, Mi, pM, mpright, mfound) ;
}
//--------------------------------------------------------------------------
// return result
//--------------------------------------------------------------------------
// pM, pA, and pB partition the three vectors M(:,j), A(:,j), and B(:,j),
// or if any vector is empty, their p* pointer is -1.
ASSERT (GB_IMPLIES ((pM > pM_start && pM < pM_end),
GBI (Mi, pM-1, vlen) < i)) ;
ASSERT (GB_IMPLIES ((pM >= pM_start && pM < pM_end),
GBI (Mi, pM, vlen) >= i)) ;
ASSERT (GB_IMPLIES ((pA > pA_start && pA < pA_end),
GBI (Ai, pA-1, vlen) < i)) ;
ASSERT (GB_IMPLIES ((pA >= pA_start && pA < pA_end),
GBI (Ai, pA, vlen) >= i)) ;
ASSERT (GB_IMPLIES ((pB > pB_start && pB < pB_end),
GBI (Bi, pB-1, vlen) < i)) ;
ASSERT (GB_IMPLIES ((pB >= pB_start && pB < pB_end),
GBI (Bi, pB, vlen) >= i)) ;
if (p_i != NULL)
{
(*p_i) = i ;
}
if (p_pM != NULL)
{
(*p_pM) = pM ;
}
(*p_pA) = pA ;
(*p_pB) = pB ;
}
|