1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
|
//------------------------------------------------------------------------------
// GB_split: split a matrix into an array of matrices
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
#define GB_FREE_WORKSPACE \
GB_WERK_POP (Tile_cols, int64_t) ; \
GB_WERK_POP (Tile_rows, int64_t) ;
#define GB_FREE_ALL \
GB_FREE_WORKSPACE ; \
for (int64_t k = 0 ; k < m*n ; k++) \
{ \
GB_Matrix_free (&(Tiles [k])) ; \
}
#include "GB_split.h"
GrB_Info GB_split // split a matrix
(
GrB_Matrix *Tiles, // 2D row-major array of size m-by-n
const GrB_Index m,
const GrB_Index n,
const GrB_Index *Tile_nrows, // array of size m
const GrB_Index *Tile_ncols, // array of size n
const GrB_Matrix A, // input matrix
GB_Context Context
)
{
//--------------------------------------------------------------------------
// allocate workspace
//--------------------------------------------------------------------------
// set all Tiles to NULL
GrB_Info info ;
ASSERT (Tiles != NULL) ;
memset (Tiles, 0, m * n * sizeof (GrB_Matrix)) ;
GB_WERK_DECLARE (Tile_rows, int64_t) ;
GB_WERK_DECLARE (Tile_cols, int64_t) ;
GB_WERK_PUSH (Tile_rows, m+1, int64_t) ;
GB_WERK_PUSH (Tile_cols, n+1, int64_t) ;
if (Tile_rows == NULL || Tile_cols == NULL)
{
// out of memory
GB_FREE_ALL ;
return (GrB_OUT_OF_MEMORY) ;
}
//--------------------------------------------------------------------------
// check inputs
//--------------------------------------------------------------------------
ASSERT_MATRIX_OK (A, "A input for GB_split", GB0) ;
GB_MATRIX_WAIT (A) ;
if (A->iso)
{
GBURBLE ("(iso split) ") ;
}
//--------------------------------------------------------------------------
// check the sizes of each tile
//--------------------------------------------------------------------------
int64_t nrows = GB_NROWS (A) ;
int64_t ncols = GB_NCOLS (A) ;
int64_t s = 0 ;
for (int64_t i = 0 ; i < m ; i++)
{
GrB_Index tile_nrows = Tile_nrows [i] ; // # of rows in Tile{i,:}
if (tile_nrows < 0 || tile_nrows > nrows)
{
return (GrB_DIMENSION_MISMATCH) ;
}
Tile_rows [i] = s ; // cumulative sum
s += tile_nrows ;
}
if (s != nrows)
{
return (GrB_DIMENSION_MISMATCH) ;
}
Tile_rows [m] = nrows ;
s = 0 ;
for (int64_t j = 0 ; j < n ; j++)
{
GrB_Index tile_ncols = Tile_ncols [j] ; // # of cols in Tile{:,j}
if (tile_ncols < 0 || tile_ncols > ncols)
{
return (GrB_DIMENSION_MISMATCH) ;
}
Tile_cols [j] = s ; // cumulative sum
s += tile_ncols ;
}
if (s != ncols)
{
return (GrB_DIMENSION_MISMATCH) ;
}
Tile_cols [n] = ncols ;
//--------------------------------------------------------------------------
// Tiles = split (A)
//--------------------------------------------------------------------------
if (GB_is_dense (A))
{
// A is full
GBURBLE ("(full split) ") ;
GB_OK (GB_split_full (Tiles, m, n, Tile_rows, Tile_cols, A, Context)) ;
}
else if (GB_IS_BITMAP (A))
{
// A is bitmap
GBURBLE ("(bitmap split) ") ;
GB_OK (GB_split_bitmap (Tiles, m, n, Tile_rows, Tile_cols, A, Context));
}
else
{
// A is sparse/hypersparse, each Tile has the same sparsity as A
GBURBLE ("(sparse/hyper split) ") ;
GB_OK (GB_split_sparse (Tiles, m, n, Tile_rows, Tile_cols, A, Context));
}
//--------------------------------------------------------------------------
// free workspace and return result
//--------------------------------------------------------------------------
GB_FREE_WORKSPACE ;
return (GrB_SUCCESS) ;
}
|