1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
|
//------------------------------------------------------------------------------
// GB_subassign_01: C(I,J) = scalar ; using S
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// Method 01: C(I,J) = scalar ; using S
// M: NULL
// Mask_comp: false
// C_replace: false
// accum: NULL
// A: scalar
// S: constructed
// C: not bitmap
#include "GB_subassign_methods.h"
GrB_Info GB_subassign_01
(
GrB_Matrix C,
// input:
const GrB_Index *I,
const int64_t ni,
const int64_t nI,
const int Ikind,
const int64_t Icolon [3],
const GrB_Index *J,
const int64_t nj,
const int64_t nJ,
const int Jkind,
const int64_t Jcolon [3],
const void *scalar,
const GrB_Type atype,
GB_Context Context
)
{
//--------------------------------------------------------------------------
// check inputs
//--------------------------------------------------------------------------
ASSERT (!GB_IS_BITMAP (C)) ;
//--------------------------------------------------------------------------
// S = C(I,J)
//--------------------------------------------------------------------------
GB_EMPTY_TASKLIST ;
GB_CLEAR_STATIC_HEADER (S, &S_header) ;
GB_OK (GB_subassign_symbolic (S, C, I, ni, J, nj, true, Context)) ;
//--------------------------------------------------------------------------
// get inputs
//--------------------------------------------------------------------------
GB_GET_C ; // C must not be bitmap
const int64_t *restrict Ch = C->h ;
const int64_t *restrict Cp = C->p ;
const bool C_is_hyper = (Ch != NULL) ;
const int64_t Cnvec = C->nvec ;
GB_GET_SCALAR ;
GB_GET_S ;
GrB_BinaryOp accum = NULL ;
//--------------------------------------------------------------------------
// Method 01: C(I,J) = scalar ; using S
//--------------------------------------------------------------------------
// Time: Optimal; must visit all IxJ, so Omega(|I|*|J|) is required.
// Entries in S are found and the corresponding entry in C replaced with
// the scalar. The traversal of S is identical to the traversal of M in
// Method 4.
// Method 01 and Method 03 are very similar.
//--------------------------------------------------------------------------
// Parallel: all IxJ (Methods 01, 03, 13, 15, 17, 19)
//--------------------------------------------------------------------------
GB_SUBASSIGN_IXJ_SLICE ;
//--------------------------------------------------------------------------
// phase 1: create zombies, update entries, and count pending tuples
//--------------------------------------------------------------------------
#pragma omp parallel for num_threads(nthreads) schedule(dynamic,1) \
reduction(+:nzombies)
for (taskid = 0 ; taskid < ntasks ; taskid++)
{
//----------------------------------------------------------------------
// get the task descriptor
//----------------------------------------------------------------------
GB_GET_IXJ_TASK_DESCRIPTOR_PHASE1 (iA_start, iA_end) ;
//----------------------------------------------------------------------
// compute all vectors in this task
//----------------------------------------------------------------------
for (int64_t j = kfirst ; j <= klast ; j++)
{
//------------------------------------------------------------------
// get jC, the corresponding vector of C
//------------------------------------------------------------------
int64_t jC = GB_ijlist (J, j, Jkind, Jcolon) ;
//------------------------------------------------------------------
// get S(iA_start:end,j)
//------------------------------------------------------------------
GB_LOOKUP_VECTOR_FOR_IXJ (S, iA_start) ;
//------------------------------------------------------------------
// C(I(iA_start,iA_end-1),jC) = scalar
//------------------------------------------------------------------
for (int64_t iA = iA_start ; iA < iA_end ; iA++)
{
bool found = (pS < pS_end) && (GBI (Si, pS, Svlen) == iA) ;
if (!found)
{
// ----[. A 1]----------------------------------------------
// S (i,j) is not present, the scalar is present
// [. A 1]: action: ( insert )
task_pending++ ;
}
else
{
// ----[C A 1] or [X A 1]-----------------------------------
// both S (i,j) and A (i,j) present
// [C A 1]: action: ( =A ): scalar to C, no accum
// [X A 1]: action: ( undelete ): zombie lives
GB_C_S_LOOKUP ;
GB_noaccum_C_A_1_scalar ;
GB_NEXT (S) ;
}
}
}
GB_PHASE1_TASK_WRAPUP ;
}
//--------------------------------------------------------------------------
// phase 2: insert pending tuples
//--------------------------------------------------------------------------
GB_PENDING_CUMSUM ;
#pragma omp parallel for num_threads(nthreads) schedule(dynamic,1) \
reduction(&&:pending_sorted)
for (taskid = 0 ; taskid < ntasks ; taskid++)
{
//----------------------------------------------------------------------
// get the task descriptor
//----------------------------------------------------------------------
GB_GET_IXJ_TASK_DESCRIPTOR_PHASE2 (iA_start, iA_end) ;
//----------------------------------------------------------------------
// compute all vectors in this task
//----------------------------------------------------------------------
for (int64_t j = kfirst ; j <= klast ; j++)
{
//------------------------------------------------------------------
// get jC, the corresponding vector of C
//------------------------------------------------------------------
int64_t jC = GB_ijlist (J, j, Jkind, Jcolon) ;
//------------------------------------------------------------------
// get S(iA_start:end,j)
//------------------------------------------------------------------
GB_LOOKUP_VECTOR_FOR_IXJ (S, iA_start) ;
//------------------------------------------------------------------
// C(I(iA_start,iA_end-1),jC) = scalar
//------------------------------------------------------------------
for (int64_t iA = iA_start ; iA < iA_end ; iA++)
{
bool found = (pS < pS_end) && (GBI (Si, pS, Svlen) == iA) ;
if (!found)
{
// ----[. A 1]----------------------------------------------
// S (i,j) is not present, the scalar is present
// [. A 1]: action: ( insert )
int64_t iC = GB_ijlist (I, iA, Ikind, Icolon) ;
GB_PENDING_INSERT (scalar) ;
}
else
{
// both S (i,j) and A (i,j) present
GB_NEXT (S) ;
}
}
}
GB_PHASE2_TASK_WRAPUP ;
}
//--------------------------------------------------------------------------
// finalize the matrix and return result
//--------------------------------------------------------------------------
GB_SUBASSIGN_WRAPUP ;
}
|