File: GB_subassign_06n.c

package info (click to toggle)
suitesparse-graphblas 7.4.0%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 67,112 kB
  • sloc: ansic: 1,072,243; cpp: 8,081; sh: 512; makefile: 506; asm: 369; python: 125; awk: 10
file content (454 lines) | stat: -rw-r--r-- 18,331 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
//------------------------------------------------------------------------------
// GB_subassign_06n: C(I,J)<M> = A ; no S
//------------------------------------------------------------------------------

// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

//------------------------------------------------------------------------------

// Method 06n: C(I,J)<M> = A ; no S

// M:           present
// Mask_comp:   false
// C_replace:   false
// accum:       NULL
// A:           matrix
// S:           none (see also GB_subassign_06s)

// FULL: if A and C are dense, then C remains dense.

// If A is sparse and C dense, C will likely become sparse, except if M(i,j)=0
// wherever A(i,j) is not present.  So if M==A is aliased and A is sparse, then
// C remains dense.  Need C(I,J)<A,struct>=A kernel.  Then in that case, if C
// is dense it remains dense, even if A is sparse.   If that change is made,
// this kernel can start with converting C to sparse if A is sparse.

// C is not bitmap: GB_bitmap_assign is used if C is bitmap.
// M and A are not bitmap: 06s is used instead, if M or A are bitmap.

#include "GB_subassign_methods.h"

GrB_Info GB_subassign_06n
(
    GrB_Matrix C,
    // input:
    const GrB_Index *I,
    const int64_t nI,
    const int Ikind,
    const int64_t Icolon [3],
    const GrB_Index *J,
    const int64_t nJ,
    const int Jkind,
    const int64_t Jcolon [3],
    const GrB_Matrix M,
    const bool Mask_struct,
    const GrB_Matrix A,
    GB_Context Context
)
{

    //--------------------------------------------------------------------------
    // check inputs
    //--------------------------------------------------------------------------

    ASSERT (!GB_IS_BITMAP (C)) ; ASSERT (!GB_IS_FULL (C)) ;
    ASSERT (!GB_IS_BITMAP (M)) ;    // Method 06n is not used for M bitmap
    ASSERT (!GB_IS_BITMAP (A)) ;    // Method 06n is not used for A bitmap
    ASSERT (!GB_aliased (C, M)) ;   // NO ALIAS of C==M
    ASSERT (!GB_aliased (C, A)) ;   // NO ALIAS of C==A

    ASSERT_MATRIX_OK (C, "C input for 06n", GB0) ;
    ASSERT_MATRIX_OK (M, "M input for 06n", GB0) ;
    ASSERT_MATRIX_OK (A, "A input for 06n", GB0) ;

    //--------------------------------------------------------------------------
    // get inputs
    //--------------------------------------------------------------------------

    GB_EMPTY_TASKLIST ;
    GB_MATRIX_WAIT_IF_JUMBLED (C) ;
    GB_MATRIX_WAIT_IF_JUMBLED (M) ;
    GB_MATRIX_WAIT_IF_JUMBLED (A) ;

    GB_GET_C ;      // C must not be bitmap
    int64_t zorig = C->nzombies ;
    const int64_t Cnvec = C->nvec ;
    const int64_t *restrict Ch = C->h ;
    const int64_t *restrict Cp = C->p ;
    const bool C_is_hyper = (Ch != NULL) ;
    GB_GET_C_HYPER_HASH ;
    GB_GET_MASK ;
    GB_GET_A ;
    const int64_t *restrict Ah = A->h ;
    const int64_t Anvec = A->nvec ;
    const bool A_is_hyper = (Ah != NULL) ;
    GrB_BinaryOp accum = NULL ;

    GB_OK (GB_hyper_hash_build (A, Context)) ;
    const int64_t *restrict A_Yp = (A_is_hyper) ? A->Y->p : NULL ;
    const int64_t *restrict A_Yi = (A_is_hyper) ? A->Y->i : NULL ;
    const int64_t *restrict A_Yx = (A_is_hyper) ? A->Y->x : NULL ;
    const int64_t A_hash_bits = (A_is_hyper) ? (A->Y->vdim - 1) : 0 ;

    //--------------------------------------------------------------------------
    // Method 06n: C(I,J)<M> = A ; no S
    //--------------------------------------------------------------------------

    // Time: O(nnz(M)*(log(a)+log(c)), where a and c are the # of entries in a
    // vector of A and C, respectively.  The entries in the intersection of M
    // (where the entries are true) and the matrix addition C(I,J)+A must be
    // examined.  This method scans M, and searches for entries in A and C(I,J)
    // using two binary searches.  If M is very dense, this method can be
    // slower than Method 06s.  This method is selected if nnz (A) >= nnz (M).

    // Compare with Methods 05 and 07, which use a similar algorithmic outline
    // and parallelization strategy.

    //--------------------------------------------------------------------------
    // Parallel: slice M into coarse/fine tasks (Method 05, 06n, 07)
    //--------------------------------------------------------------------------

    GB_SUBASSIGN_ONE_SLICE (M) ;    // M cannot be jumbled 

    //--------------------------------------------------------------------------
    // phase 1: create zombies, update entries, and count pending tuples
    //--------------------------------------------------------------------------

    #pragma omp parallel for num_threads(nthreads) schedule(dynamic,1) \
        reduction(+:nzombies)
    for (taskid = 0 ; taskid < ntasks ; taskid++)
    {

        //----------------------------------------------------------------------
        // get the task descriptor
        //----------------------------------------------------------------------

        GB_GET_TASK_DESCRIPTOR_PHASE1 ;

        //----------------------------------------------------------------------
        // compute all vectors in this task
        //----------------------------------------------------------------------

        for (int64_t k = kfirst ; k <= klast ; k++)
        {

            //------------------------------------------------------------------
            // get j, the kth vector of M
            //------------------------------------------------------------------

            int64_t j = GBH (Mh, k) ;
            GB_GET_VECTOR (pM, pM_end, pA, pA_end, Mp, k, Mvlen) ;
            int64_t mjnz = pM_end - pM ;
            if (mjnz == 0) continue ;

            //------------------------------------------------------------------
            // get A(:,j)
            //------------------------------------------------------------------

            int64_t pA, pA_end ;
            GB_LOOKUP_VECTOR (pA, pA_end, A, j) ;
            int64_t ajnz = pA_end - pA ;
            bool ajdense = (ajnz == Avlen) ;
            int64_t pA_start = pA ;

            //------------------------------------------------------------------
            // get jC, the corresponding vector of C
            //------------------------------------------------------------------

            GB_LOOKUP_VECTOR_jC (fine_task, taskid) ;
            int64_t cjnz = pC_end - pC_start ;
            if (cjnz == 0 && ajnz == 0) continue ;
            bool cjdense = (cjnz == Cvlen) ;

            //------------------------------------------------------------------
            // C(I,jC)<M(:,j)> = A(:,j) ; no S
            //------------------------------------------------------------------

            if (cjdense && ajdense)
            {

                //--------------------------------------------------------------
                // C(:,jC) and A(:,j) are both dense
                //--------------------------------------------------------------

                for ( ; pM < pM_end ; pM++)
                {

                    //----------------------------------------------------------
                    // update C(iC,jC), but only if M(iA,j) allows it
                    //----------------------------------------------------------

                    if (GB_mcast (Mx, pM, msize))
                    { 
                        int64_t iA = GBI (Mi, pM, Mvlen) ;
                        GB_iC_DENSE_LOOKUP ;

                        // find iA in A(:,j)
                        // A(:,j) is dense; no need for binary search
                        pA = pA_start + iA ;
                        ASSERT (GBI (Ai, pA, Avlen) == iA) ;
                        // ----[C A 1] or [X A 1]-----------------------
                        // [C A 1]: action: ( =A ): copy A to C, no acc
                        // [X A 1]: action: ( undelete ): zombie lives
                        GB_noaccum_C_A_1_matrix ;
                    }
                }

            }
            else if (cjdense)
            {

                //--------------------------------------------------------------
                // C(:,jC) is dense, A(:,j) is sparse
                //--------------------------------------------------------------

                for ( ; pM < pM_end ; pM++)
                {

                    //----------------------------------------------------------
                    // update C(iC,jC), but only if M(iA,j) allows it
                    //----------------------------------------------------------

                    if (GB_mcast (Mx, pM, msize))
                    {
                        int64_t iA = GBI (Mi, pM, Mvlen) ;
                        GB_iC_DENSE_LOOKUP ;

                        // find iA in A(:,j)
                        bool aij_found ;
                        int64_t apright = pA_end - 1 ;
                        GB_BINARY_SEARCH (iA, Ai, pA, apright, aij_found) ;

                        if (!aij_found)
                        { 
                            // C (iC,jC) is present but A (i,j) is not
                            // ----[C . 1] or [X . 1]---------------------------
                            // [C . 1]: action: ( delete ): becomes zombie
                            // [X . 1]: action: ( X ): still zombie
                            GB_DELETE_ENTRY ;
                        }
                        else
                        { 
                            // ----[C A 1] or [X A 1]---------------------------
                            // [C A 1]: action: ( =A ): copy A to C, no accum
                            // [X A 1]: action: ( undelete ): zombie lives
                            GB_noaccum_C_A_1_matrix ;
                        }
                    }
                }

            }
            else if (ajdense)
            {

                //--------------------------------------------------------------
                // C(:,jC) is sparse, A(:,j) is dense
                //--------------------------------------------------------------

                for ( ; pM < pM_end ; pM++)
                {

                    //----------------------------------------------------------
                    // update C(iC,jC), but only if M(iA,j) allows it
                    //----------------------------------------------------------

                    if (GB_mcast (Mx, pM, msize))
                    {
                        int64_t iA = GBI (Mi, pM, Mvlen) ;

                        // find C(iC,jC) in C(:,jC)
                        GB_iC_BINARY_SEARCH ;

                        // lookup iA in A(:,j)
                        pA = pA_start + iA ;
                        ASSERT (GBI (Ai, pA, Avlen) == iA) ;

                        if (cij_found)
                        { 
                            // ----[C A 1] or [X A 1]---------------------------
                            // [C A 1]: action: ( =A ): copy A into C, no accum
                            // [X A 1]: action: ( undelete ): zombie lives
                            GB_noaccum_C_A_1_matrix ;
                        }
                        else
                        { 
                            // C (iC,jC) is not present, A (i,j) is present
                            // ----[. A 1]--------------------------------------
                            // [. A 1]: action: ( insert )
                            task_pending++ ;
                        }
                    }
                }

            }
            else
            {

                //--------------------------------------------------------------
                // C(:,jC) and A(:,j) are both sparse
                //--------------------------------------------------------------

                for ( ; pM < pM_end ; pM++)
                {

                    //----------------------------------------------------------
                    // update C(iC,jC), but only if M(iA,j) allows it
                    //----------------------------------------------------------

                    if (GB_mcast (Mx, pM, msize))
                    {
                        int64_t iA = GBI (Mi, pM, Mvlen) ;

                        // find C(iC,jC) in C(:,jC)
                        GB_iC_BINARY_SEARCH ;

                        // find iA in A(:,j)
                        bool aij_found ;
                        int64_t apright = pA_end - 1 ;
                        GB_BINARY_SEARCH (iA, Ai, pA, apright, aij_found) ;

                        if (cij_found && aij_found)
                        { 
                            // ----[C A 1] or [X A 1]---------------------------
                            // [C A 1]: action: ( =A ): copy A into C, no accum
                            // [X A 1]: action: ( undelete ): zombie lives
                            GB_noaccum_C_A_1_matrix ;
                        }
                        else if (!cij_found && aij_found)
                        { 
                            // C (iC,jC) is not present, A (i,j) is present
                            // ----[. A 1]--------------------------------------
                            // [. A 1]: action: ( insert )
                            task_pending++ ;
                        }
                        else if (cij_found && !aij_found)
                        { 
                            // C (iC,jC) is present but A (i,j) is not
                            // ----[C . 1] or [X . 1]---------------------------
                            // [C . 1]: action: ( delete ): becomes zombie
                            // [X . 1]: action: ( X ): still zombie
                            GB_DELETE_ENTRY ;
                        }
                    }
                }
            }
        }

        GB_PHASE1_TASK_WRAPUP ;
    }

    //--------------------------------------------------------------------------
    // phase 2: insert pending tuples
    //--------------------------------------------------------------------------

    GB_PENDING_CUMSUM ;
    zorig = C->nzombies ;

    #pragma omp parallel for num_threads(nthreads) schedule(dynamic,1) \
        reduction(&&:pending_sorted)
    for (taskid = 0 ; taskid < ntasks ; taskid++)
    {

        //----------------------------------------------------------------------
        // get the task descriptor
        //----------------------------------------------------------------------

        GB_GET_TASK_DESCRIPTOR_PHASE2 ;

        //----------------------------------------------------------------------
        // compute all vectors in this task
        //----------------------------------------------------------------------

        for (int64_t k = kfirst ; k <= klast ; k++)
        {

            //------------------------------------------------------------------
            // get j, the kth vector of M
            //------------------------------------------------------------------

            int64_t j = GBH (Mh, k) ;
            GB_GET_VECTOR (pM, pM_end, pA, pA_end, Mp, k, Mvlen) ;
            int64_t mjnz = pM_end - pM ;
            if (mjnz == 0) continue ;

            //------------------------------------------------------------------
            // get A(:,j)
            //------------------------------------------------------------------

            int64_t pA, pA_end ;
            GB_LOOKUP_VECTOR (pA, pA_end, A, j) ;
            int64_t ajnz = pA_end - pA ;
            if (ajnz == 0) continue ;
            bool ajdense = (ajnz == Avlen) ;
            int64_t pA_start = pA ;

            //------------------------------------------------------------------
            // get jC, the corresponding vector of C
            //------------------------------------------------------------------

            GB_LOOKUP_VECTOR_jC (fine_task, taskid) ;
            bool cjdense = ((pC_end - pC_start) == Cvlen) ;

            //------------------------------------------------------------------
            // C(I,jC)<M(:,j)> = A(:,j)
            //------------------------------------------------------------------

            if (!cjdense)
            {

                //--------------------------------------------------------------
                // C(:,jC) is sparse; use binary search for C
                //--------------------------------------------------------------

                for ( ; pM < pM_end ; pM++)
                {

                    //----------------------------------------------------------
                    // update C(iC,jC), but only if M(iA,j) allows it
                    //----------------------------------------------------------

                    if (GB_mcast (Mx, pM, msize))
                    {
                        int64_t iA = GBI (Mi, pM, Mvlen) ;

                        // find iA in A(:,j)
                        if (ajdense)
                        { 
                            // A(:,j) is dense; no need for binary search
                            pA = pA_start + iA ;
                            ASSERT (GBI (Ai, pA, Avlen) == iA) ;
                        }
                        else
                        { 
                            // A(:,j) is sparse; use binary search
                            int64_t apright = pA_end - 1 ;
                            bool aij_found ;
                            GB_BINARY_SEARCH (iA, Ai, pA, apright, aij_found) ;
                            if (!aij_found) continue ;
                        }

                        // find C(iC,jC) in C(:,jC)
                        GB_iC_BINARY_SEARCH ;
                        if (!cij_found)
                        { 
                            // C (iC,jC) is not present, A (i,j) is present
                            // ----[. A 1]--------------------------------------
                            // [. A 1]: action: ( insert )
                            GB_PENDING_INSERT_aij ;
                        }
                    }
                }
            }
        }

        GB_PHASE2_TASK_WRAPUP ;
    }

    //--------------------------------------------------------------------------
    // finalize the matrix and return result
    //--------------------------------------------------------------------------

    GB_SUBASSIGN_WRAPUP ;
}