1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
|
//------------------------------------------------------------------------------
// GB_subassign_08n_slice: slice the entries and vectors for GB_subassign_08n
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// Constructs a set of tasks to compute C for GB_subassign_08n, based on
// slicing two input matrices (A and M). Fine tasks must also find their
// location in their vector C(:,jC).
// This method is used only by GB_subassign_08n. New zombies cannot be
// created, since no entries are deleted. Old zombies can be brought back to
// life, however.
// ===================== ==============
// M cmp rpl acc A S method: action
// ===================== ==============
// M - - + A - 08n: C(I,J)<M> += A, no S
// C, M, A: not bitmap. C can be full.
// If C is bitmap, then GB_bitmap_assign_M_accum is used instead.
// If M or A are bitmap, but C is sparse or hyper, then Method 08s is used
// instead (which handles both M and A as bitmap). As a result, this method
// does not need to consider the bitmap case for C, M, or A.
#include "GB_subassign_methods.h"
#include "GB_emult.h"
// Npending is set to NULL by the GB_EMPTY_TASKLIST macro, but unused here.
#include "GB_unused.h"
GrB_Info GB_subassign_08n_slice
(
// output:
GB_task_struct **p_TaskList, // array of structs, of size max_ntasks
size_t *p_TaskList_size, // size of TaskList
int *p_ntasks, // # of tasks constructed
int *p_nthreads, // # of threads to use
int64_t *p_Znvec, // # of vectors to compute in Z
const int64_t *restrict *Zh_handle, // Zh_shallow is A->h, M->h, or NULL
int64_t *restrict *Z_to_A_handle, // Z_to_A: size Znvec, or NULL
size_t *Z_to_A_size_handle,
int64_t *restrict *Z_to_M_handle, // Z_to_M: size Znvec, or NULL
size_t *Z_to_M_size_handle,
// input:
const GrB_Matrix C, // output matrix C
const GrB_Index *I,
const int64_t nI,
const int Ikind,
const int64_t Icolon [3],
const GrB_Index *J,
const int64_t nJ,
const int Jkind,
const int64_t Jcolon [3],
const GrB_Matrix A, // matrix to slice
const GrB_Matrix M, // matrix to slice
GB_Context Context
)
{
//--------------------------------------------------------------------------
// check inputs
//--------------------------------------------------------------------------
ASSERT (!GB_IS_BITMAP (C)) ;
ASSERT (!GB_IS_BITMAP (M)) ; // Method 08n is not used for M bitmap
ASSERT (!GB_IS_BITMAP (A)) ; // Method 08n is not used for A bitmap
GB_EMPTY_TASKLIST
ASSERT (p_TaskList != NULL) ;
ASSERT (p_ntasks != NULL) ;
ASSERT (p_nthreads != NULL) ;
ASSERT_MATRIX_OK (C, "C for 08n_slice", GB0) ;
ASSERT_MATRIX_OK (M, "M for 08n_slice", GB0) ;
ASSERT_MATRIX_OK (A, "A for 08n_slice", GB0) ;
ASSERT (!GB_JUMBLED (C)) ;
ASSERT (!GB_JUMBLED (M)) ;
ASSERT (!GB_JUMBLED (A)) ;
ASSERT (p_Znvec != NULL) ;
ASSERT (Zh_handle != NULL) ;
ASSERT (Z_to_A_handle != NULL) ;
ASSERT (Z_to_M_handle != NULL) ;
(*p_TaskList ) = NULL ;
(*p_TaskList_size) = 0 ;
(*p_ntasks ) = 0 ;
(*p_nthreads ) = 1 ;
(*p_Znvec ) = 0 ;
(*Zh_handle ) = NULL ;
(*Z_to_A_handle) = NULL ;
(*Z_to_M_handle) = NULL ;
//--------------------------------------------------------------------------
// get inputs
//--------------------------------------------------------------------------
int64_t *restrict Ci = C->i ;
int64_t nzombies = C->nzombies ;
const int64_t Cnvec = C->nvec ;
const int64_t Cvlen = C->vlen ;
const int64_t *restrict Ch = C->h ;
const int64_t *restrict Cp = C->p ;
const bool C_is_hyper = (Ch != NULL) ;
GB_GET_C_HYPER_HASH ;
const int64_t *restrict Mp = M->p ;
const int64_t *restrict Mh = M->h ;
const int64_t *restrict Mi = M->i ;
const int64_t Mvlen = M->vlen ;
const int64_t *restrict Ap = A->p ;
const int64_t *restrict Ah = A->h ;
const int64_t *restrict Ai = A->i ;
const int64_t Avlen = A->vlen ;
//--------------------------------------------------------------------------
// construct fine/coarse tasks for eWise multiply of A.*M
//--------------------------------------------------------------------------
// Compare with the first part of GB_emult for A.*B. Note that M in this
// function takes the place of B in GB_emult.
int64_t Znvec ;
const int64_t *restrict Zh_shallow = NULL ;
int Z_sparsity = GxB_SPARSE ;
GB_OK (GB_emult_phase0 (&Znvec, &Zh_shallow, &Zh_size, NULL, NULL,
&Z_to_A, &Z_to_A_size, &Z_to_M, &Z_to_M_size, &Z_sparsity, NULL, A, M,
Context)) ;
// Z is still sparse or hypersparse, not bitmap or full
ASSERT (Z_sparsity == GxB_SPARSE || Z_sparsity == GxB_HYPERSPARSE) ;
GB_OK (GB_ewise_slice (
&TaskList, &TaskList_size, &ntasks, &nthreads,
Znvec, Zh_shallow, NULL, Z_to_A, Z_to_M, false,
NULL, A, M, Context)) ;
//--------------------------------------------------------------------------
// slice C(:,jC) for each fine task
//--------------------------------------------------------------------------
// Each fine task that operates on C(:,jC) must be limited to just its
// portion of C(:,jC). Otherwise, one task could bring a zombie to life,
// at the same time another is attempting to do a binary search on that
// entry. This is safe as long as a 64-bit integer read/write is always
// atomic, but there is no gaurantee that this is true for all
// architectures. Note that GB_subassign_08n cannot create new zombies.
// This work could be done in parallel, but each task does at most 2 binary
// searches. The total work for all the binary searches will likely be
// small. So do the work with a single thread.
for (taskid = 0 ; taskid < ntasks ; taskid++)
{
//----------------------------------------------------------------------
// get the task descriptor
//----------------------------------------------------------------------
GB_GET_TASK_DESCRIPTOR ;
//----------------------------------------------------------------------
// do the binary search for this fine task
//----------------------------------------------------------------------
if (fine_task)
{
//------------------------------------------------------------------
// get A(:,j) and M(:,j)
//------------------------------------------------------------------
int64_t k = kfirst ;
int64_t j = GBH (Zh_shallow, k) ;
GB_GET_EVEC (pA, pA_end, pA, pA_end, Ap, Ah, j, k, Z_to_A, Avlen) ;
GB_GET_EVEC (pM, pM_end, pB, pB_end, Mp, Mh, j, k, Z_to_M, Mvlen) ;
//------------------------------------------------------------------
// quick checks for empty intersection of A(:,j) and M(:,j)
//------------------------------------------------------------------
int64_t ajnz = pA_end - pA ;
int64_t mjnz = pM_end - pM ;
if (ajnz == 0 || mjnz == 0) continue ;
int64_t iA_first = GBI (Ai, pA, Avlen) ;
int64_t iA_last = GBI (Ai, pA_end-1, Avlen) ;
int64_t iM_first = GBI (Mi, pM, Mvlen) ;
int64_t iM_last = GBI (Mi, pM_end-1, Mvlen) ;
if (iA_last < iM_first || iM_last < iA_first) continue ;
//------------------------------------------------------------------
// get jC, the corresponding vector of C
//------------------------------------------------------------------
GB_LOOKUP_VECTOR_jC (false, 0) ;
bool cjdense = (pC_end - pC_start == Cvlen) ;
//------------------------------------------------------------------
// slice C(:,jC) for this fine task
//------------------------------------------------------------------
if (cjdense)
{
// do not slice C(:,jC) if it is dense
TaskList [taskid].pC = pC_start ;
TaskList [taskid].pC_end = pC_end ;
}
else
{
// find where this task starts and ends in C(:,jC)
int64_t iA_start = GB_IMIN (iA_first, iM_first) ;
int64_t iC1 = GB_ijlist (I, iA_start, Ikind, Icolon) ;
int64_t iA_end = GB_IMAX (iA_last, iM_last) ;
int64_t iC2 = GB_ijlist (I, iA_end, Ikind, Icolon) ;
// If I is an explicit list, it must be already sorted
// in ascending order, and thus iC1 <= iC2. If I is
// GB_ALL or GB_STRIDE with inc >= 0, then iC1 < iC2.
// But if inc < 0, then iC1 > iC2. iC_start and iC_end
// are used for a binary search bracket, so iC_start <=
// iC_end must hold.
int64_t iC_start = GB_IMIN (iC1, iC2) ;
int64_t iC_end = GB_IMAX (iC1, iC2) ;
// this task works on Ci,Cx [pC:pC_end-1]
int64_t pleft = pC_start ;
int64_t pright = pC_end - 1 ;
bool found, is_zombie ;
GB_SPLIT_BINARY_SEARCH_ZOMBIE (iC_start, Ci, pleft, pright,
found, nzombies, is_zombie) ;
TaskList [taskid].pC = pleft ;
pleft = pC_start ;
pright = pC_end - 1 ;
GB_SPLIT_BINARY_SEARCH_ZOMBIE (iC_end, Ci, pleft, pright,
found, nzombies, is_zombie) ;
TaskList [taskid].pC_end = (found) ? (pleft+1) : pleft ;
}
ASSERT (TaskList [taskid].pC <= TaskList [taskid].pC_end) ;
}
}
//--------------------------------------------------------------------------
// return result
//--------------------------------------------------------------------------
(*p_TaskList ) = TaskList ;
(*p_TaskList_size) = TaskList_size ;
(*p_ntasks ) = ntasks ;
(*p_nthreads ) = nthreads ;
(*p_Znvec ) = Znvec ;
(*Zh_handle ) = Zh_shallow ;
(*Z_to_A_handle) = Z_to_A ; (*Z_to_A_size_handle) = Z_to_A_size ;
(*Z_to_M_handle) = Z_to_M ; (*Z_to_M_size_handle) = Z_to_M_size ;
return (GrB_SUCCESS) ;
}
|