1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
|
//------------------------------------------------------------------------------
// GB_subassign_zombie: C(I,J)<!,repl> = empty ; using S
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// Method 00: C(I,J)<!,repl> = empty ; using S
// M: NULL
// Mask_comp: true
// C_replace: true
// accum: any (present or not; result is the same)
// A: any (scalar or matrix; result is the same)
// S: constructed
// C: not bitmap
// C->iso is not affected.
#include "GB_subassign_methods.h"
#undef GB_FREE_ALL
#define GB_FREE_ALL GB_Matrix_free (&S) ;
#include "GB_static_header.h"
GrB_Info GB_subassign_zombie
(
GrB_Matrix C,
// input:
const GrB_Index *I,
const int64_t ni,
const int64_t nI,
const int Ikind,
const int64_t Icolon [3],
const GrB_Index *J,
const int64_t nj,
const int64_t nJ,
const int Jkind,
const int64_t Jcolon [3],
GB_Context Context
)
{
//--------------------------------------------------------------------------
// check inputs
//--------------------------------------------------------------------------
ASSERT (!GB_IS_BITMAP (C)) ; ASSERT (!GB_IS_FULL (C)) ;
//--------------------------------------------------------------------------
// S = C(I,J), but do not construct the S->H hyper_hash
//--------------------------------------------------------------------------
GrB_Info info ;
struct GB_Matrix_opaque S_header ;
GrB_Matrix S = NULL ;
GB_CLEAR_STATIC_HEADER (S, &S_header) ;
GB_OK (GB_subassign_symbolic (S, C, I, ni, J, nj, false, Context)) ;
ASSERT (GB_JUMBLED_OK (S)) ; // S can be returned as jumbled
// the S->Y hyper_hash is not needed
//--------------------------------------------------------------------------
// get inputs
//--------------------------------------------------------------------------
const int64_t *restrict Sx = (int64_t *) S->x ;
int64_t *restrict Ci = C->i ;
//--------------------------------------------------------------------------
// Method 00: C(I,J)<!,repl> = empty ; using S
//--------------------------------------------------------------------------
// Time: Optimal, O(nnz(S)), assuming S has already been constructed.
//--------------------------------------------------------------------------
// Parallel: all entries in S can be processed entirely in parallel.
//--------------------------------------------------------------------------
// All entries in C(I,J) are deleted. The result does not depend on A or
// the scalar.
int64_t snz = GB_nnz (S) ;
GB_GET_NTHREADS_MAX (nthreads_max, chunk, Context) ;
int nthreads = GB_nthreads (snz, chunk, nthreads_max) ;
int64_t nzombies = C->nzombies ;
int64_t pS ;
#pragma omp parallel for num_threads(nthreads) schedule(static) \
reduction(+:nzombies)
for (pS = 0 ; pS < snz ; pS++)
{
// S (inew,jnew) is a pointer back into C (I(inew), J(jnew))
int64_t pC = Sx [pS] ;
int64_t i = Ci [pC] ;
// ----[X A 0] or [X . 0]-----------------------------------------------
// action: ( X ): still a zombie
// ----[C A 0] or [C . 0]-----------------------------------------------
// action: C_repl: ( delete ): becomes a zombie
if (!GB_IS_ZOMBIE (i))
{
nzombies++ ;
Ci [pC] = GB_FLIP (i) ;
}
}
//--------------------------------------------------------------------------
// free workspace and return result
//--------------------------------------------------------------------------
C->nzombies = nzombies ;
GB_FREE_ALL ;
return (GrB_SUCCESS) ;
}
|