1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
|
//------------------------------------------------------------------------------
// GB_subassigner_method: determine method for GB_subassign
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
#include "GB_subassign.h"
int GB_subassigner_method // return method to use in GB_subassigner
(
// outputs
bool *C_iso_out, // true if C is iso on output
GB_void *cout, // iso value of C on output
// inputs
const GrB_Matrix C, // input/output matrix for results
const bool C_replace, // C matrix descriptor
const GrB_Matrix M, // optional mask for C(I,J), unused if NULL
const bool Mask_comp, // mask descriptor
const bool Mask_struct, // if true, use the only structure of M
const GrB_BinaryOp accum, // optional accum for Z=accum(C(I,J),A)
const GrB_Matrix A, // input matrix (NULL for scalar expansion)
const int Ikind,
const int Jkind,
const bool scalar_expansion, // if true, expand scalar to A
const void *scalar,
const GrB_Type atype // type of A, or the type of the scalar
)
{
//--------------------------------------------------------------------------
// get all properties of C, M, and A required by this function
//--------------------------------------------------------------------------
#ifdef GB_DEBUG
// empty_mask: mask not present and complemented. This condition has
// already handled by GB_assign_prep.
bool empty_mask = (M == NULL) && Mask_comp ;
ASSERT (!empty_mask) ;
#endif
// no_mask: mask not present and not complemented
bool no_mask = (M == NULL) && !Mask_comp ;
bool M_is_A = (M == A) ;
bool M_is_bitmap = GB_IS_BITMAP (M) ;
bool A_is_bitmap = GB_IS_BITMAP (A) ;
bool A_as_if_full = GB_as_if_full (A) ;
int64_t anz = GB_nnz (A) ;
// these properties of C are not affected by wait(C):
bool C_is_M = (C == M) ;
GrB_Type ctype = C->type ;
// these properties of C can change after wait(C):
bool C_is_empty = (GB_nnz (C) == 0 && !GB_PENDING (C) && !GB_ZOMBIES (C)) ;
bool C_is_bitmap = GB_IS_BITMAP (C) ;
bool C_as_if_full = GB_as_if_full (C) ;
bool C_is_full = GB_IS_FULL (C) ;
//--------------------------------------------------------------------------
// determine the method to use
//--------------------------------------------------------------------------
// whole_C_matrix is true if all of C(:,:) is being assigned to
bool whole_C_matrix = (Ikind == GB_ALL) && (Jkind == GB_ALL) ;
bool C_splat_scalar = false ; // C(:,:) = x
bool C_splat_matrix = false ; // C(:,:) = A
if (whole_C_matrix && no_mask && (accum == NULL))
{
// C(:,:) = x or A: whole matrix assignment with no mask
if (scalar_expansion)
{
// Method 21: C(:,:) = x
C_splat_scalar = true ;
}
else
{
// Method 24: C(:,:) = A
C_splat_matrix = true ;
}
}
// check if C is competely dense: all entries present and no pending work.
bool C_dense_update = false ;
if (C_as_if_full && whole_C_matrix && no_mask && (accum != NULL)
&& (ctype == accum->ztype) && (ctype == accum->xtype))
{
// C(:,:) += x or A, where C is dense, no typecasting of C
C_dense_update = true ;
}
// GB_assign_prep has already disabled C_replace if no mask present
ASSERT (GB_IMPLIES (no_mask, !C_replace)) ;
// if C is empty, C_replace is effectively false and already disabled
ASSERT (GB_IMPLIES (C_is_empty, !C_replace)) ;
// simple_mask: C(I,J)<M> = ... ; or C(I,J)<M> += ...
bool simple_mask = (!C_replace && M != NULL && !Mask_comp) ;
// C_Mask_scalar: C(I,J)<M> = scalar or += scalar
bool C_Mask_scalar = (scalar_expansion && simple_mask) ;
// C_Mask_matrix: C(I,J)<M> = A or += A
bool C_Mask_matrix = (!scalar_expansion && simple_mask) ;
bool S_Extraction ;
bool method_06d = false ;
bool method_25 = false ;
if (C_splat_scalar)
{
// Method 21: C(:,:) = x where x is a scalar; C becomes dense
S_Extraction = false ;
}
else if (C_splat_matrix)
{
// Method 24: C(:,:) = A
S_Extraction = false ;
}
else if (C_dense_update)
{
// Methods 22 and 23: C(:,:) += x or A where C is dense
S_Extraction = false ;
}
else if (C_Mask_scalar)
{
// Method 05*, or 07: C(I,J)<M> = or += scalar; C_replace false
S_Extraction = false ;
}
else if (C_Mask_matrix)
{
// C(I,J)<M> = A or += A
if (accum != NULL)
{
// Method 08n: C(I,J)<M> += A, no S. Cannot use M or A as bitmap.
// Method 08s: C(I,J)<M> += A, with S. Can use M or A as bitmap.
// if S_Extraction is true, Method 08s is used (with S).
// Method 08n is not used if any matrix is bitmap.
// If C is bitmap, GB_bitmap_assign_M_accum is used instead.
S_Extraction = M_is_bitmap || A_is_bitmap ;
}
else
{
// C(I,J)<M> = A ; use 06s (with S) or 06n (without S)
// method 06s (with S) is faster when nnz (A) < nnz (M).
if ((C_as_if_full || C_is_bitmap) && whole_C_matrix && M_is_A)
{
// Method 06d: C<A> = A
method_06d = true ;
S_Extraction = false ;
}
else if (C_is_empty && whole_C_matrix && Mask_struct &&
(A_as_if_full || A_is_bitmap))
{
// Method 25: C<M,s> = A, where M is structural, A is
// dense, and C starts out empty. The pattern of C will be the
// same as M, and the subassign method is extremely simple.
method_25 = true ;
S_Extraction = false ;
}
else
{
// Method 06n (no S) or Method 06s (with S):
// Method 06n is not used if M or A are bitmap. If M and A are
// aliased and Method 06d is not used, then 06s is used instead
// of 06n since M==A implies nnz(A) == nnz(M).
S_Extraction = anz < GB_nnz (M) || M_is_bitmap || A_is_bitmap ;
}
}
}
else
{
// all other methods require S
S_Extraction = true ;
}
//==========================================================================
// submatrix assignment C(I,J)<M> = accum (C(I,J),A): meta-algorithm
//==========================================================================
// There are up to 128 combinations of options, but not all must be
// implemented, because they are either identical to another method
// (C_replace is effectively false if M=NULL and Mask_comp=false), or they
// are not used (the last option, whether or not S is constructed, is
// determined here; it is not a user input). The first 5 options are
// determined by the input. The table below has been pruned to remove
// combinations that are not used, or equivalent to other entries in the
// table. Only 22 unique combinations of the 128 combinations are needed,
// with additional special cases when C(:,:) is dense.
// M present or NULL
// Mask_comp true or false
// Mask_struct structural or valued mask
// C_replace true or false
// accum present or NULL
// A scalar (x) or matrix (A)
// S constructed or not
// C(I,J)<(M,comp,repl)> ( = , += ) (A, scalar), (with or without S);
// I and J can be anything for any of these methods (":", colon, or list).
// See the "No work to do..." comment above:
// If M is not present, Mask_comp true, C_replace false: no work to do.
// If M is not present, Mask_comp true, C_replace true: use Method 00
// If M is not present, Mask_comp false: C_replace is now false.
// ===================== ==============
// M cmp rpl acc A S method: action
// ===================== ==============
// - - x - - - 21: C = x, no S, C anything
// - - x - A - 24: C = A, no S, C and A anything
// - - - + - - 22: C += x, no S, C dense
// - - - + A - 23: C += A, no S, C dense
// - - - - - S 01: C(I,J) = x, with S
// - - - - A S 02: C(I,J) = A, with S
// - - - + - S 03: C(I,J) += x, with S
// - - - + A S 04: C(I,J) += A, with S
// - - r uses methods 01, 02, 03, 04
// - c - no work to do
// - c r S 00: C(I,J)<!,repl> = empty, with S
// M - - - - - 05d: C<M> = x, no S, C dense
// M - - - - - 05e: C<M,s> = x, no S, C empty
// M - - - - - 05f: C<C,s> = x, no S, C == M
// M - - - - - 05: C(I,J)<M> = x, no S
// A - - - A - 06d: C<A> = A, no S, C dense
// M - - - A - 25: C<M,s> = A, A dense, C empty
// M - - - A - 06n: C(I,J)<M> = A, no S
// M - - - A S 06s: C(I,J)<M> = A, with S
// M - - + - - 07: C(I,J)<M> += x, no S
// M - - + A - 08n: C(I,J)<M> += A, no S
// M - - + A - 08s: C(I,J)<M> += A, with S
// M - r - - S 09: C(I,J)<M,repl> = x, with S
// M - r - A S 10: C(I,J)<M,repl> = A, with S
// M - r + - S 11: C(I,J)<M,repl> += x, with S
// M - r + A S 12: C(I,J)<M,repl> += A, with S
// M c - - - S 13: C(I,J)<!M> = x, with S
// M c - - A S 14: C(I,J)<!M> = A, with S
// M c - + - S 15: C(I,J)<!M> += x, with S
// M c - + A S 16: C(I,J)<!M> += A, with S
// M c r - - S 17: C(I,J)<!M,repl> = x, with S
// M c r - A S 18: C(I,J)<!M,repl> = A, with S
// M c r + - S 19: C(I,J)<!M,repl> += x, with S
// M c r + A S 20: C(I,J)<!M,repl> += A, with S
//----------------------------------------------------------------------
// FUTURE::: 8 simpler cases when I and J are ":" (S not needed):
//----------------------------------------------------------------------
// M - - - A - 06x: C(:,:)<M> = A
// M - - + A - 08x: C(:,:)<M> += A
// M - r - A - 10x: C(:,:)<M,repl> = A
// M - r + A - 12x: C(:,:)<M,repl> += A
// M c - - A - 14x: C(:,:)<!M> = A
// M c - + A - 16x: C(:,:)<!M> += A
// M c r - A - 18x: C(:,:)<!M,repl> = A
// M c r + A - 20x: C(:,:)<!M,repl> += A
//----------------------------------------------------------------------
// FUTURE::: C<C,s> += x C == M, update all values, C_replace ignored
// FUTURE::: C<C,s> = A C == M, A dense, C_replace ignored
//----------------------------------------------------------------------
// For the single case C(I,J)<M>=A, two methods can be used: 06n and 06s.
int subassign_method = -1 ;
if (C_splat_scalar)
{
//----------------------------------------------------------------------
// C = x where x is a scalar; C becomes full
//----------------------------------------------------------------------
// ===================== ==============
// M cmp rpl acc A S method: action
// ===================== ==============
// - - x - - - 21: C = x, no S, C anything
ASSERT (whole_C_matrix) ; // C(:,:) is modified
ASSERT (M == NULL) ; // no mask present
ASSERT (accum == NULL) ; // accum is not present
ASSERT (!C_replace) ; // C_replace is effectively false
ASSERT (!S_Extraction) ; // S is not used
ASSERT (scalar_expansion) ; // x is a scalar
// Method 21: C = x where x is a scalar; C becomes full
subassign_method = GB_SUBASSIGN_METHOD_21 ;
}
else if (C_splat_matrix)
{
//----------------------------------------------------------------------
// C = A
//----------------------------------------------------------------------
// ===================== ==============
// M cmp rpl acc A S method: action
// ===================== ==============
// - - x - A - 24: C = A, no S, C and A anything
ASSERT (whole_C_matrix) ; // C(:,:) is modified
ASSERT (M == NULL) ; // no mask present
ASSERT (accum == NULL) ; // accum is not present
ASSERT (!C_replace) ; // C_replace is effectively false
ASSERT (!S_Extraction) ; // S is not used
ASSERT (!scalar_expansion) ; // A is a matrix
// Method 24: C = A
subassign_method = GB_SUBASSIGN_METHOD_24 ;
}
else if (C_dense_update)
{
//----------------------------------------------------------------------
// C += A or x where C is dense or full (and becomes full)
//----------------------------------------------------------------------
// ===================== ==============
// M cmp rpl acc A S method: action
// ===================== ==============
// - - - + - - 22: C += x, no S, C dense
// - - - + A - 23: C += A, no S, C dense
ASSERT (C_as_if_full) ; // C is dense
ASSERT (whole_C_matrix) ; // C(:,:) is modified
ASSERT (M == NULL) ; // no mask present
ASSERT (accum != NULL) ; // accum is present
ASSERT (!C_replace) ; // C_replace is false
ASSERT (!S_Extraction) ; // S is not used
if (scalar_expansion)
{
// Method 22: C(:,:) += x where C is dense or full
subassign_method = GB_SUBASSIGN_METHOD_22 ;
}
else
{
// Method 23: C(:,:) += A where C is dense or full
subassign_method = GB_SUBASSIGN_METHOD_23 ;
}
}
else if (C_Mask_scalar)
{
//----------------------------------------------------------------------
// C(I,J)<M> = scalar or +=scalar
//----------------------------------------------------------------------
// ===================== ==============
// M cmp rpl acc A S method: action
// ===================== ==============
// M - - - - - 05d: C(:,:)<M> = x, no S, C dense
// M - - - - - 05e: C(:,:)<M,s> = x, no S, C empty
// M - - - - - 05f: C(:,:)<C,s> = x, no S, C == M
// M - - - - - 05: C(I,J)<M> = x, no S
// M - - + - - 07: C(I,J)<M> += x, no S
ASSERT (scalar_expansion) ; // A is a scalar
ASSERT (M != NULL && !Mask_comp) ; // mask M present, not compl.
ASSERT (!C_replace) ; // C_replace is false
ASSERT (!S_Extraction) ; // S is not used
if (accum == NULL)
{
if (C_is_M && whole_C_matrix && Mask_struct)
{
// Method 05f: C(:,:)<C,s> = scalar ; no S ; C == M ; M struct
subassign_method = GB_SUBASSIGN_METHOD_05f ;
}
else if (C_is_empty && whole_C_matrix && Mask_struct)
{
// Method 05e: C(:,:)<M,s> = scalar ; no S; C empty, M struct
subassign_method = GB_SUBASSIGN_METHOD_05e ;
}
else if (C_as_if_full && whole_C_matrix)
{
// Method 05d: C(:,:)<M> = scalar ; no S; C is dense or full;
// C becomes full.
subassign_method = GB_SUBASSIGN_METHOD_05d ;
}
else
{
// Method 05: C(I,J)<M> = scalar ; no S
subassign_method = GB_SUBASSIGN_METHOD_05 ;
}
}
else
{
// Method 07: C(I,J)<M> += scalar ; no S
subassign_method = GB_SUBASSIGN_METHOD_07 ;
}
}
else if (C_Mask_matrix)
{
//----------------------------------------------------------------------
// C(I,J)<M> = A or += A
//----------------------------------------------------------------------
// ===================== ==============
// M cmp rpl acc A S method: action
// ===================== ==============
// M - - + A - 08n: C(I,J)<M> += A, no S
// M - - + A - 08s: C(I,J)<M> += A, with S
// A - - - A - 06d: C<A> = A, no S, C dense
// M - x - A - 25: C<M,s> = A, A dense, C empty
// M - - - A - 06n: C(I,J)<M> = A, no S
// M - - - A S 06s: C(I,J)<M> = A, with S
ASSERT (!scalar_expansion) ; // A is a matrix
ASSERT (M != NULL && !Mask_comp) ; // mask M present, not compl.
ASSERT (!C_replace) ;
if (accum != NULL)
{
if (S_Extraction)
{
// Method 08s: C(I,J)<M> += A ; with S
subassign_method = GB_SUBASSIGN_METHOD_08s ;
}
else
{
// Method 08n: C(I,J)<M> += A ; no S
// No matrix can be bitmap.
subassign_method = GB_SUBASSIGN_METHOD_08n ;
}
}
else if (method_06d)
{
// Method 06d: C(:,:)<A> = A ; no S, C dense or full;
subassign_method = GB_SUBASSIGN_METHOD_06d ;
ASSERT ((C_as_if_full || C_is_bitmap) && whole_C_matrix && M == A) ;
}
else if (method_25)
{
// Method 25: C<M,struct> = A, C empty; A is dense, full, or bitmap
subassign_method = GB_SUBASSIGN_METHOD_25 ;
}
else if (!S_Extraction)
{
// Method 06n: C(I,J)<M> = A ; no S
// If M or A are bitmap, this method is not used;
// 06s is used instead.
subassign_method = GB_SUBASSIGN_METHOD_06n ;
}
else
{
// Method 06s: C(I,J)<M> = A ; using S
subassign_method = GB_SUBASSIGN_METHOD_06s ;
}
}
else if (M == NULL)
{
//----------------------------------------------------------------------
// assignment using S_Extraction method, no mask M
//----------------------------------------------------------------------
// ===================== ==============
// M cmp rpl acc A S method: action
// ===================== ==============
// - - - - - S 01: C(I,J) = x, with S
// - - - - A S 02: C(I,J) = A, with S
// - - - + - S 03: C(I,J) += x, with S
// - - - + A S 04: C(I,J) += A, with S
ASSERT (!Mask_comp) ;
ASSERT (!C_replace) ;
ASSERT (S_Extraction) ; // S is used
if (scalar_expansion)
{
if (accum == NULL)
{
// Method 01: C(I,J) = scalar ; using S
subassign_method = GB_SUBASSIGN_METHOD_01 ;
}
else
{
// Method 03: C(I,J) += scalar ; using S
subassign_method = GB_SUBASSIGN_METHOD_03 ;
}
}
else
{
if (accum == NULL)
{
// Method 02: C(I,J) = A ; using S
subassign_method = GB_SUBASSIGN_METHOD_02 ;
}
else
{
// Method 04: C(I,J) += A ; using S
subassign_method = GB_SUBASSIGN_METHOD_04 ;
}
}
}
else if (scalar_expansion)
{
//----------------------------------------------------------------------
// C(I,J)<#M> = scalar or += scalar ; using S
//----------------------------------------------------------------------
// ===================== ==============
// M cmp rpl acc A S method: action
// ===================== ==============
// M - r - - S 09: C(I,J)<M,repl> = x, with S
// M - r + - S 11: C(I,J)<M,repl> += x, with S
// M c - - - S 13: C(I,J)<!M> = x, with S
// M c - + - S 15: C(I,J)<!M> += x, with S
// M c r - - S 17: C(I,J)<!M,repl> = x, with S
// M c r + - S 19: C(I,J)<!M,repl> += x, with S
ASSERT (!C_Mask_scalar) ;
ASSERT (C_replace || Mask_comp) ;
ASSERT (S_Extraction) ; // S is used
if (accum == NULL)
{
if (Mask_comp && C_replace)
{
// Method 17: C(I,J)<!M,repl> = scalar ; using S
subassign_method = GB_SUBASSIGN_METHOD_17 ;
}
else if (Mask_comp)
{
// Method 13: C(I,J)<!M> = scalar ; using S
subassign_method = GB_SUBASSIGN_METHOD_13 ;
}
else // if (C_replace)
{
// Method 09: C(I,J)<M,repl> = scalar ; using S
ASSERT (C_replace) ;
subassign_method = GB_SUBASSIGN_METHOD_09 ;
}
}
else
{
if (Mask_comp && C_replace)
{
// Method 19: C(I,J)<!M,repl> += scalar ; using S
subassign_method = GB_SUBASSIGN_METHOD_19 ;
}
else if (Mask_comp)
{
// Method 15: C(I,J)<!M> += scalar ; using S
subassign_method = GB_SUBASSIGN_METHOD_15 ;
}
else // if (C_replace)
{
// Method 11: C(I,J)<M,repl> += scalar ; using S
ASSERT (C_replace) ;
subassign_method = GB_SUBASSIGN_METHOD_11 ;
}
}
}
else
{
//------------------------------------------------------------------
// C(I,J)<#M> = A or += A ; using S
//------------------------------------------------------------------
// ===================== ==============
// M cmp rpl acc A S method: action
// ===================== ==============
// M - r - A S 10: C(I,J)<M,repl> = A, with S
// M - r + A S 12: C(I,J)<M,repl> += A, with S
// M c - - A S 14: C(I,J)<!M> = A, with S
// M c - + A S 16: C(I,J)<!M> += A, with S
// M c r - A S 18: C(I,J)<!M,repl> = A, with S
// M c r + A S 20: C(I,J)<!M,repl> += A, with S
ASSERT (Mask_comp || C_replace) ;
ASSERT (S_Extraction) ; // S is used
if (accum == NULL)
{
if (Mask_comp && C_replace)
{
// Method 18: C(I,J)<!M,repl> = A ; using S
subassign_method = GB_SUBASSIGN_METHOD_18 ;
}
else if (Mask_comp)
{
// Method 14: C(I,J)<!M> = A ; using S
subassign_method = GB_SUBASSIGN_METHOD_14 ;
}
else // if (C_replace)
{
// Method 10: C(I,J)<M,repl> = A ; using S
ASSERT (C_replace) ;
subassign_method = GB_SUBASSIGN_METHOD_10 ;
}
}
else
{
if (Mask_comp && C_replace)
{
// Method 20: C(I,J)<!M,repl> += A ; using S
subassign_method = GB_SUBASSIGN_METHOD_20 ;
}
else if (Mask_comp)
{
subassign_method = GB_SUBASSIGN_METHOD_16 ;
}
else // if (C_replace)
{
// Method 12: C(I,J)<M,repl> += A ; using S
ASSERT (C_replace) ;
subassign_method = GB_SUBASSIGN_METHOD_12 ;
}
}
}
//--------------------------------------------------------------------------
// determine the iso property of C on output
//--------------------------------------------------------------------------
// For scalar expansion, or if A is iso on input, then C might be iso on
// output. Otherwise, C is always non-iso on output. Skip this if cout or
// C_iso_out are NULL, since that means they have already been computed.
bool iso_check = (cout != NULL && C_iso_out != NULL) ;
if (iso_check)
{
bool A_iso = scalar_expansion // all scalars are iso
|| (A != NULL && A->iso) // or A is iso
|| (anz == 1 && !A_is_bitmap) ; // or A is effectively iso
if (A_iso)
{
//------------------------------------------------------------------
// cout = tentative iso value of C on output
//------------------------------------------------------------------
GB_Type_code ccode = ctype->code ;
size_t csize = ctype->size ;
GB_Type_code acode = atype->code ;
size_t asize = atype->size ;
// cout = (ctype) (scalar or A->x)
GB_cast_scalar (cout, ccode, (scalar_expansion) ? scalar : A->x,
acode, asize) ;
bool c_ok = false ;
if (C_is_empty)
{
// C is empty on input; note that C->iso might also be true,
// but this is ignored.
c_ok = true ;
}
else if (C->iso)
{
// C is iso on input; compare cout and C->x
c_ok = (memcmp (cout, C->x, csize) == 0) ;
}
//------------------------------------------------------------------
// apply the accum, if present, and compare its result with cout
//------------------------------------------------------------------
bool accum_ok = false ;
if (c_ok && accum != NULL && C->iso)
{
if (C_is_empty)
{
// If C is empty, the accum is not applied.
accum_ok = true ;
}
else
{
// C is iso and not empty; check the result of accum
GxB_binary_function faccum = accum->binop_function ;
size_t xsize = accum->xtype->size ;
size_t ysize = accum->ytype->size ;
size_t zsize = accum->ztype->size ;
GB_Type_code xcode = accum->xtype->code ;
GB_Type_code ycode = accum->ytype->code ;
GB_Type_code zcode = accum->ztype->code ;
// x = (xtype) C->x
GB_void x [GB_VLA(xsize)] ;
GB_cast_scalar (x, xcode, C->x, ccode, csize) ;
// y = (ytype) (scalar or A->x)
GB_void y [GB_VLA(ysize)] ;
GB_cast_scalar (y, ycode,
(scalar_expansion) ? scalar : A->x, acode, asize) ;
// z = x + y
GB_void z [GB_VLA(zsize)] ;
faccum (z, x, y) ;
// c = (ctype) z
GB_void c [GB_VLA(csize)] ;
GB_cast_scalar (c, ccode, z, zcode, zsize) ;
// compare c and cout
accum_ok = (memcmp (cout, c, csize) == 0) ;
}
}
switch (subassign_method)
{
//--------------------------------------------------------------
// C_out is iso if C_in empty, or C_in iso and cin == scalar
//--------------------------------------------------------------
case GB_SUBASSIGN_METHOD_01 : // C(I,J) = scalar
case GB_SUBASSIGN_METHOD_05 : // C(I,J)<M> = scalar
case GB_SUBASSIGN_METHOD_13 : // C(I,J)<!M> = scalar
case GB_SUBASSIGN_METHOD_05d : // C(:,:)<M> = scalar ; C dense
case GB_SUBASSIGN_METHOD_09 : // C(I,J)<M,replace> = scalar
case GB_SUBASSIGN_METHOD_17 : // C(I,J)<!M,replace> = scalar
(*C_iso_out) = c_ok ;
break ;
//--------------------------------------------------------------
// C_out is iso if C_in empty, or C_in iso and cin == a
//--------------------------------------------------------------
case GB_SUBASSIGN_METHOD_02 : // C(I,J) = A
case GB_SUBASSIGN_METHOD_06s : // C(I,J)<M> = A ; with S
case GB_SUBASSIGN_METHOD_14 : // C(I,J)<!M> = A
case GB_SUBASSIGN_METHOD_10 : // C(I,J)<M,replace> = A
case GB_SUBASSIGN_METHOD_18 : // C(I,J)<!M,replace> = A
case GB_SUBASSIGN_METHOD_06d : // C(:,:)<A> = A ; C is dense
case GB_SUBASSIGN_METHOD_06n : // C(I,J)<M> = A ; no S
(*C_iso_out) = c_ok ;
break ;
//--------------------------------------------------------------
// C_out is always iso, regardless of C_in
//--------------------------------------------------------------
case GB_SUBASSIGN_METHOD_21 : // C(:,:) = scalar
case GB_SUBASSIGN_METHOD_05e : // C(:,:)<M,struct>=x ; C empty
case GB_SUBASSIGN_METHOD_05f : // C(:,:)<C,struct>=scalar
(*C_iso_out) = true ; // scalars are always iso
break ;
//--------------------------------------------------------------
// C_out is iso if A is iso, regardless of C_in
//--------------------------------------------------------------
case GB_SUBASSIGN_METHOD_24 : // C = A
case GB_SUBASSIGN_METHOD_25 : // C(:,:)<M,str> = A ; C empty
(*C_iso_out) = true ; // A is iso (see above)
break ;
//--------------------------------------------------------------
// C_out is iso if C_in empty, or C_in iso and cin == cin+scalar
//--------------------------------------------------------------
case GB_SUBASSIGN_METHOD_03 : // C(I,J) += scalar
case GB_SUBASSIGN_METHOD_07 : // C(I,J)<M> += scalar
case GB_SUBASSIGN_METHOD_15 : // C(I,J)<!M> += scalar
case GB_SUBASSIGN_METHOD_22 : // C += scalar ; C is dense
case GB_SUBASSIGN_METHOD_11 : // C(I,J)<M,replace> += scalar
case GB_SUBASSIGN_METHOD_19 : // C(I,J)<!M,replace> += scalar
(*C_iso_out) = accum_ok ;
break ;
//--------------------------------------------------------------
// C_out is iso if C_in empty, or C_in and A iso and cin==cin+a
//--------------------------------------------------------------
case GB_SUBASSIGN_METHOD_12 : // C(I,J)<M,replace> += A
case GB_SUBASSIGN_METHOD_20 : // C(I,J)<!M,replace> += A
case GB_SUBASSIGN_METHOD_04 : // C(I,J) += A
case GB_SUBASSIGN_METHOD_08s : // C(I,J)<M> += A, with S
case GB_SUBASSIGN_METHOD_16 : // C(I,J)<!M> += A
case GB_SUBASSIGN_METHOD_23 : // C += A ; C is dense
case GB_SUBASSIGN_METHOD_08n : // C(I,J)<M> += A, no S
(*C_iso_out) = accum_ok ;
break ;
default :;
}
}
else
{
// A is non-iso, so C is non-iso on output, and cout is not
// computed
(*C_iso_out) = false ;
}
}
//--------------------------------------------------------------------------
// determine if the subassign method can handle this case for bitmaps
//--------------------------------------------------------------------------
#define GB_USE_BITMAP_IF(condition) \
if (condition) subassign_method = GB_SUBASSIGN_METHOD_BITMAP ;
switch (subassign_method)
{
//----------------------------------------------------------------------
// scalar assignent methods
//----------------------------------------------------------------------
case GB_SUBASSIGN_METHOD_01 : // C(I,J) = scalar
case GB_SUBASSIGN_METHOD_03 : // C(I,J) += scalar
case GB_SUBASSIGN_METHOD_05 : // C(I,J)<M> = scalar
case GB_SUBASSIGN_METHOD_07 : // C(I,J)<M> += scalar
case GB_SUBASSIGN_METHOD_13 : // C(I,J)<!M> = scalar
case GB_SUBASSIGN_METHOD_15 : // C(I,J)<!M> += scalar
case GB_SUBASSIGN_METHOD_21 : // C(:,:) = scalar
// M can have any sparsity structure, including bitmap
GB_USE_BITMAP_IF (C_is_bitmap) ;
break ;
case GB_SUBASSIGN_METHOD_05d : // C(:,:)<M> = scalar ; C is dense
case GB_SUBASSIGN_METHOD_05e : // C(:,:)<M,struct> = scalar ; C empty
case GB_SUBASSIGN_METHOD_05f : // C(:,:)<C,struct> = scalar
case GB_SUBASSIGN_METHOD_22 : // C += scalar ; C is dense
// C and M can have any sparsity pattern, including bitmap
break ;
case GB_SUBASSIGN_METHOD_09 : // C(I,J)<M,replace> = scalar
case GB_SUBASSIGN_METHOD_11 : // C(I,J)<M,replace> += scalar
case GB_SUBASSIGN_METHOD_17 : // C(I,J)<!M,replace> = scalar
case GB_SUBASSIGN_METHOD_19 : // C(I,J)<!M,replace> += scalar
// M can have any sparsity structure, including bitmap
GB_USE_BITMAP_IF (C_is_bitmap || C_is_full) ;
break ;
//----------------------------------------------------------------------
// matrix assignent methods
//----------------------------------------------------------------------
// GB_accum_mask may use any of these methods, with I and J as GB_ALL.
case GB_SUBASSIGN_METHOD_02 : // C(I,J) = A
case GB_SUBASSIGN_METHOD_06s : // C(I,J)<M> = A ; with S
case GB_SUBASSIGN_METHOD_14 : // C(I,J)<!M> = A
case GB_SUBASSIGN_METHOD_10 : // C(I,J)<M,replace> = A
case GB_SUBASSIGN_METHOD_18 : // C(I,J)<!M,replace> = A
case GB_SUBASSIGN_METHOD_12 : // C(I,J)<M,replace> += A
case GB_SUBASSIGN_METHOD_20 : // C(I,J)<!M,replace> += A
// M can have any sparsity structure, including bitmap
GB_USE_BITMAP_IF (C_is_bitmap || C_is_full) ;
break ;
case GB_SUBASSIGN_METHOD_04 : // C(I,J) += A
case GB_SUBASSIGN_METHOD_08s : // C(I,J)<M> += A, with S
case GB_SUBASSIGN_METHOD_16 : // C(I,J)<!M> += A
case GB_SUBASSIGN_METHOD_24 : // C = A
// M can have any sparsity structure, including bitmap
GB_USE_BITMAP_IF (C_is_bitmap) ;
break ;
case GB_SUBASSIGN_METHOD_06d : // C(:,:)<A> = A ; C is dense
case GB_SUBASSIGN_METHOD_23 : // C += A ; C is dense
// C, M, and A can have any sparsity structure, including bitmap
break ;
case GB_SUBASSIGN_METHOD_25 : // C(:,:)<M,struct> = A ; C empty
// C, M, and A can have any sparsity structure, including bitmap,
// but if M is bitmap or full, use bitmap assignment instead.
GB_USE_BITMAP_IF (M_is_bitmap || GB_IS_FULL (M)) ;
break ;
case GB_SUBASSIGN_METHOD_06n : // C(I,J)<M> = A ; no S
// If M or A are bitmap, Method 06s is used instead of 06n.
GB_USE_BITMAP_IF (C_is_bitmap || C_is_full) ;
ASSERT (!M_is_bitmap) ;
ASSERT (!A_is_bitmap) ;
break ;
case GB_SUBASSIGN_METHOD_08n : // C(I,J)<M> += A, no S
// Method 08s is used instead of 08n if M or A are bitmap.
GB_USE_BITMAP_IF (C_is_bitmap) ;
ASSERT (!M_is_bitmap) ;
ASSERT (!A_is_bitmap) ;
break ;
// case GB_SUBASSIGN_METHOD_BITMAP:
default :;
subassign_method = GB_SUBASSIGN_METHOD_BITMAP ;
}
//--------------------------------------------------------------------------
// return result
//--------------------------------------------------------------------------
return (subassign_method) ;
}
|