File: GB_subref_slice.c

package info (click to toggle)
suitesparse-graphblas 7.4.0%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 67,112 kB
  • sloc: ansic: 1,072,243; cpp: 8,081; sh: 512; makefile: 506; asm: 369; python: 125; awk: 10
file content (473 lines) | stat: -rw-r--r-- 19,067 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
//------------------------------------------------------------------------------
// GB_subref_slice: construct coarse/fine tasks for C = A(I,J)
//------------------------------------------------------------------------------

// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

//------------------------------------------------------------------------------

// Determine the tasks for computing C=A(I,J).  The matrix C has Cnvec vectors,
// and these are divided into coarse and fine tasks.  A coarse task will
// compute one or more whole vectors of C.  A fine task operates on a slice of
// a single vector of C.  The slice can be done by the # of entries in the
// corresponding vector of A, or by the list of indices I, depending on how the
// work is done for that method.

// The (kC)th vector will access A(imin:imax,kA) in Ai,Ax [pA:pA_end-1], where
// pA = Ap_start [kC] and pA_end = Ap_end [kC].

// The computation of each vector C(:,kC) = A(I,kA) is by done using one of 12
// different cases, depending on the vector, as determined by GB_subref_method.
// Not all vectors in C are computed using the same method.

// Note that J can have duplicates.  kC is unique (0:Cnvec-1) but the
// corresponding vector kA in A may repeat, if J has duplicates.  Duplicates in
// J are not exploited, since the coarse/fine tasks are constructed by slicing
// slicing the list of vectors Ch of size Cnvec, not the vectors of A.

// Compare this function with GB_ewise_slice, which constructs coarse/fine
// tasks for the eWise operations (C=A+B, C=A.*B, and C<M>=Z).

#define GB_FREE_WORKSPACE                       \
{                                               \
    GB_WERK_POP (Coarse, int64_t) ;             \
    GB_FREE_WORK (&Cwork, Cwork_size) ;         \
}

#define GB_FREE_ALL                             \
{                                               \
    GB_FREE_WORKSPACE ;                         \
    GB_FREE_WORK (&TaskList, TaskList_size) ;   \
    GB_FREE_WORK (&Mark, Mark_size) ;           \
    GB_FREE_WORK (&Inext, Inext_size) ;         \
}

#include "GB_subref.h"

GrB_Info GB_subref_slice    // phase 1 of GB_subref
(
    // output:
    GB_task_struct **p_TaskList,    // array of structs
    size_t *p_TaskList_size,        // size of TaskList
    int *p_ntasks,                  // # of tasks constructed
    int *p_nthreads,                // # of threads for subref operation
    bool *p_post_sort,              // true if a final post-sort is needed
    int64_t *restrict *p_Mark,      // for I inverse, if needed; size avlen
    size_t *p_Mark_size,
    int64_t *restrict *p_Inext,     // for I inverse, if needed; size nI
    size_t *p_Inext_size,
    int64_t *p_nduplicates,         // # of duplicates, if I inverse computed
    // from phase0:
    const int64_t *restrict Ap_start,   // location of A(imin:imax,kA)
    const int64_t *restrict Ap_end,
    const int64_t Cnvec,            // # of vectors of C
    const bool need_qsort,          // true if C must be sorted
    const int Ikind,                // GB_ALL, GB_RANGE, GB_STRIDE or GB_LIST
    const int64_t nI,               // length of I
    const int64_t Icolon [3],       // for GB_RANGE and GB_STRIDE
    // original input:
    const int64_t avlen,            // A->vlen
    const int64_t anz,              // nnz (A)
    const GrB_Index *I,
    GB_Context Context
)
{

    //--------------------------------------------------------------------------
    // check inputs
    //--------------------------------------------------------------------------

    ASSERT (p_TaskList != NULL) ;
    ASSERT (p_TaskList_size != NULL) ;
    ASSERT (p_ntasks != NULL) ;
    ASSERT (p_nthreads != NULL) ;
    ASSERT (p_post_sort != NULL) ;
    ASSERT (p_Mark  != NULL) ;
    ASSERT (p_Inext != NULL) ;
    ASSERT (p_nduplicates != NULL) ;

    ASSERT ((Cnvec > 0) == (Ap_start != NULL)) ;
    ASSERT ((Cnvec > 0) == (Ap_end != NULL)) ;

    (*p_TaskList) = NULL ;
    (*p_TaskList_size) = 0 ;
    (*p_Mark    ) = NULL ;
    (*p_Inext   ) = NULL ;

    int64_t *restrict Mark  = NULL ; size_t Mark_size = 0 ;
    int64_t *restrict Inext = NULL ; size_t Inext_size = 0 ;

    int64_t *restrict Cwork = NULL ; size_t Cwork_size = 0 ;
    GB_WERK_DECLARE (Coarse, int64_t) ;     // size ntasks1+1
    int ntasks1 = 0 ;

    GrB_Info info ;

    //--------------------------------------------------------------------------
    // determine # of threads to use
    //--------------------------------------------------------------------------

    GB_GET_NTHREADS_MAX (nthreads_max, chunk, Context) ;

    //--------------------------------------------------------------------------
    // allocate the initial TaskList
    //--------------------------------------------------------------------------

    // Allocate the TaskList to hold at least 2*ntask0 tasks.  It will grow
    // later, if needed.  Usually, 64*nthreads_max is enough, but in a few cases
    // fine tasks can cause this number to be exceeded.  If that occurs,
    // TaskList is reallocated.

    // When the mask is present, it is often fastest to break the work up
    // into tasks, even when nthreads_max is 1.

    GB_task_struct *restrict TaskList = NULL ; size_t TaskList_size = 0 ;
    int max_ntasks = 0 ;
    int ntasks0 = (nthreads_max == 1) ? 1 : (32 * nthreads_max) ;
    GB_REALLOC_TASK_WORK (TaskList, ntasks0, max_ntasks) ;

    //--------------------------------------------------------------------------
    // determine if I_inverse can be constructed
    //--------------------------------------------------------------------------

    // I_inverse_ok is true if I might be inverted.  If false, then I will not
    // be inverted.  I can be inverted only if the workspace for the inverse
    // does not exceed nnz(A).  Note that if I was provided on input as an
    // explicit list, but consists of a contiguous range imin:imax, then Ikind
    // is now GB_LIST and the list I is ignored.

    // If I_inverse_ok is true, the inverse of I might still not be needed.
    // need_I_inverse becomes true if any C(:,kC) = A (I,kA) computation
    // requires I inverse.

    int64_t I_inverse_limit = GB_IMAX (4096, anz) ;
    bool I_inverse_ok = (Ikind == GB_LIST &&
        ((nI > avlen / 256) || ((nI + avlen) < I_inverse_limit))) ;
    bool need_I_inverse = false ;
    bool post_sort = false ;
    int64_t iinc = Icolon [GxB_INC] ;

    //--------------------------------------------------------------------------
    // allocate workspace
    //--------------------------------------------------------------------------

    Cwork = GB_MALLOC_WORK (Cnvec+1, int64_t, &Cwork_size) ;
    if (Cwork == NULL)
    { 
        // out of memory
        GB_FREE_ALL ;
        return (GrB_OUT_OF_MEMORY) ;
    }

    //--------------------------------------------------------------------------
    // estimate the work required for each vector of C
    //--------------------------------------------------------------------------

    int nthreads_for_Cwork = GB_nthreads (Cnvec, chunk, nthreads_max) ;

    int64_t kC ;
    #pragma omp parallel for num_threads(nthreads_for_Cwork) schedule(static) \
        reduction(||:need_I_inverse)
    for (kC = 0 ; kC < Cnvec ; kC++)
    { 
        // jC is the (kC)th vector of C = A(I,J)
        // int64_t jC = GBH (Ch, kC) ;
        // C(:,kC) = A(I,kA) will be constructed
        int64_t pA      = Ap_start [kC] ;
        int64_t pA_end  = Ap_end   [kC] ;
        int64_t alen = pA_end - pA ;      // nnz (A (imin:imax,j))

        int64_t work ;              // amount of work for C(:,kC) = A (I,kA)
        bool this_needs_I_inverse ; // true if this vector needs I inverse

        // ndupl in I not yet known; it is found when I is inverted.  For
        // now, assume I has no duplicate entries.  All that is needed for now
        // is the work required for each C(:,kC), and whether or not I inverse
        // must be created.  The # of duplicates has no impact on the I inverse
        // decision, and a minor effect on the work (which is ignored).

        GB_subref_method (&work, &this_needs_I_inverse, alen, avlen,
            Ikind, nI, I_inverse_ok, need_qsort, iinc, 0) ;

        // log the result
        need_I_inverse = need_I_inverse || this_needs_I_inverse ;
        Cwork [kC] = work ;
    }

    //--------------------------------------------------------------------------
    // replace Cwork with its cumulative sum
    //--------------------------------------------------------------------------

    GB_cumsum (Cwork, Cnvec, NULL, nthreads_for_Cwork, Context) ;
    double cwork = (double) Cwork [Cnvec] ;

    //--------------------------------------------------------------------------
    // determine # of threads and tasks to use for C=A(I,J)
    //--------------------------------------------------------------------------

    int nthreads = GB_nthreads (cwork, chunk, nthreads_max) ;

    ntasks1 = (nthreads == 1) ? 1 : (32 * nthreads) ;
    double target_task_size = cwork / (double) (ntasks1) ;
    target_task_size = GB_IMAX (target_task_size, chunk) ;

    //--------------------------------------------------------------------------
    // invert I if required
    //--------------------------------------------------------------------------

    int64_t ndupl = 0 ;
    if (need_I_inverse)
    { 
        GB_OK (GB_I_inverse (I, nI, avlen, &Mark, &Mark_size,
            &Inext, &Inext_size, &ndupl, Context)) ;
        ASSERT (Mark != NULL) ;
        ASSERT (Inext != NULL) ;
    }

    //--------------------------------------------------------------------------
    // check for quick return for a single task
    //--------------------------------------------------------------------------

    if (Cnvec == 0 || ntasks1 == 1)
    { 
        // construct a single coarse task that computes all of C
        TaskList [0].kfirst = 0 ;
        TaskList [0].klast  = Cnvec-1 ;

        // free workspace and return result
        GB_FREE_WORKSPACE ;
        (*p_TaskList   ) = TaskList ;
        (*p_TaskList_size) = TaskList_size ;
        (*p_ntasks     ) = (Cnvec == 0) ? 0 : 1 ;
        (*p_nthreads   ) = 1 ;
        (*p_post_sort  ) = false ;
        (*p_Mark       ) = Mark ;
        (*p_Mark_size  ) = Mark_size ;
        (*p_Inext      ) = Inext ;
        (*p_Inext_size ) = Inext_size ;
        (*p_nduplicates) = ndupl ;
        return (GrB_SUCCESS) ;
    }

    //--------------------------------------------------------------------------
    // slice the work into coarse tasks
    //--------------------------------------------------------------------------

    GB_WERK_PUSH (Coarse, ntasks1 + 1, int64_t) ;
    if (Coarse == NULL)
    { 
        // out of memory
        GB_FREE_ALL ;
        return (GrB_OUT_OF_MEMORY) ;
    }
    GB_pslice (Coarse, Cwork, Cnvec, ntasks1, false) ;

    //--------------------------------------------------------------------------
    // construct all tasks, both coarse and fine
    //--------------------------------------------------------------------------

    int ntasks = 0 ;

    for (int t = 0 ; t < ntasks1 ; t++)
    {

        //----------------------------------------------------------------------
        // coarse task computes C (:,k:klast)
        //----------------------------------------------------------------------

        int64_t k = Coarse [t] ;
        int64_t klast = Coarse [t+1] - 1 ;

        if (k >= Cnvec)
        { 

            //------------------------------------------------------------------
            // all tasks have been constructed
            //------------------------------------------------------------------

            break ;

        }
        else if (k < klast)
        { 

            //------------------------------------------------------------------
            // coarse task has 2 or more vectors
            //------------------------------------------------------------------

            // This is a non-empty coarse-grain task that does two or more
            // entire vectors of C, vectors k:klast, inclusive.
            GB_REALLOC_TASK_WORK (TaskList, ntasks + 1, max_ntasks) ;
            TaskList [ntasks].kfirst = k ;
            TaskList [ntasks].klast  = klast ;
            ntasks++ ;

        }
        else
        {

            //------------------------------------------------------------------
            // coarse task has 0 or 1 vectors
            //------------------------------------------------------------------

            // As a coarse-grain task, this task is empty or does a single
            // vector, k.  Vector k must be removed from the work done by this
            // and any other coarse-grain task, and split into one or more
            // fine-grain tasks.

            for (int tt = t ; tt < ntasks1 ; tt++)
            {
                // remove k from the initial slice tt
                if (Coarse [tt] == k)
                { 
                    // remove k from task tt
                    Coarse [tt] = k+1 ;
                }
                else
                { 
                    // break, k not in task tt
                    break ;
                }
            }

            //------------------------------------------------------------------
            // determine the # of fine-grain tasks to create for vector k
            //------------------------------------------------------------------

            double ckwork = Cwork [k+1] - Cwork [k] ;
            int nfine = ckwork / target_task_size ;
            nfine = GB_IMAX (nfine, 1) ;

            // make the TaskList bigger, if needed
            GB_REALLOC_TASK_WORK (TaskList, ntasks + nfine, max_ntasks) ;

            //------------------------------------------------------------------
            // create the fine-grain tasks
            //------------------------------------------------------------------

            if (nfine == 1)
            { 

                //--------------------------------------------------------------
                // this is a single coarse task for all of vector k
                //--------------------------------------------------------------

                TaskList [ntasks].kfirst = k ;
                TaskList [ntasks].klast  = k ;
                ntasks++ ;

            }
            else
            {

                //--------------------------------------------------------------
                // slice vector k into nfine fine tasks
                //--------------------------------------------------------------

                // There are two kinds of fine tasks, depending on the method
                // used to compute C(:,kC) = A(I,kA).  If the method iterates
                // across all entries in A(imin:imax,kA), then those entries
                // are sliced (of size alen).  Three methods (1, 2, and 6)
                // iterate across all entries in I instead (of size nI).

                int64_t pA     = Ap_start [k] ;
                int64_t pA_end = Ap_end   [k] ;
                int64_t alen = pA_end - pA ;      // nnz (A (imin:imax,j))

                int method = GB_subref_method (NULL, NULL, alen, avlen,
                    Ikind, nI, I_inverse_ok, need_qsort, iinc, ndupl) ;

                if (method == 10)
                { 
                    // multiple fine tasks operate on a single vector C(:,kC)
                    // using method 10, and so a post-sort is needed.
                    post_sort = true ;
                }

                if (method == 1 || method == 2 || method == 6)
                {

                    // slice I for this task
                    nfine = GB_IMIN (nfine, nI) ;
                    nfine = GB_IMAX (nfine, 1) ;

                    for (int tfine = 0 ; tfine < nfine ; tfine++)
                    { 
                        // flag this as a fine task, and record the method.
                        // Methods 1, 2, and 6 slice I, not A(:,kA)
                        TaskList [ntasks].kfirst = k ;
                        TaskList [ntasks].klast = -method ;
                        // do not partition A(:,kA)
                        TaskList [ntasks].pA = pA ;
                        TaskList [ntasks].pA_end = pA_end ;
                        // partition I for this task
                        GB_PARTITION (TaskList [ntasks].pB,
                            TaskList [ntasks].pB_end, nI, tfine, nfine) ;
                        // unused
                        TaskList [ntasks].pM = -1 ;
                        TaskList [ntasks].pM_end = -1 ;
                        // no post sort
                        TaskList [ntasks].len = 0 ;
                        ntasks++ ;
                    }

                }
                else
                {

                    // slice A(:,kA) for this task
                    nfine = GB_IMIN (nfine, alen) ;
                    nfine = GB_IMAX (nfine, 1) ;

                    bool reverse = (method == 8 || method == 9) ;

                    for (int tfine = 0 ; tfine < nfine ; tfine++)
                    { 
                        // flag this as a fine task, and record the method.
                        // These methods slice A(:,kA).  Methods 8 and 9
                        // must do so in reverse order.
                        TaskList [ntasks].kfirst = k ;
                        TaskList [ntasks].klast = -method ;
                        // partition the items for this task
                        GB_PARTITION (TaskList [ntasks].pA,
                            TaskList [ntasks].pA_end, alen,
                            (reverse) ? (nfine-tfine-1) : tfine, nfine) ;
                        TaskList [ntasks].pA += pA ;
                        TaskList [ntasks].pA_end += pA  ;
                        // do not partition I
                        TaskList [ntasks].pB = 0 ;
                        TaskList [ntasks].pB_end = nI ;
                        // unused
                        TaskList [ntasks].pM = -1 ;
                        TaskList [ntasks].pM_end = -1 ;

                        // flag the task that does the post sort
                        TaskList [ntasks].len = (tfine == 0 && method == 10) ;
                        ntasks++ ;
                    }
                }
            }
        }
    }

    ASSERT (ntasks > 0) ;

    //--------------------------------------------------------------------------
    // free workspace and return result
    //--------------------------------------------------------------------------

    GB_FREE_WORKSPACE ;
    (*p_TaskList   ) = TaskList ;
    (*p_TaskList_size) = TaskList_size ;
    (*p_ntasks     ) = ntasks ;
    (*p_nthreads   ) = nthreads ;
    (*p_post_sort  ) = post_sort ;
    (*p_Mark       ) = Mark ;
    (*p_Mark_size  ) = Mark_size ;
    (*p_Inext      ) = Inext ;
    (*p_Inext_size ) = Inext_size ;
    (*p_nduplicates) = ndupl ;
    return (GrB_SUCCESS) ;
}