1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
|
//------------------------------------------------------------------------------
// GB_subref_slice: construct coarse/fine tasks for C = A(I,J)
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// Determine the tasks for computing C=A(I,J). The matrix C has Cnvec vectors,
// and these are divided into coarse and fine tasks. A coarse task will
// compute one or more whole vectors of C. A fine task operates on a slice of
// a single vector of C. The slice can be done by the # of entries in the
// corresponding vector of A, or by the list of indices I, depending on how the
// work is done for that method.
// The (kC)th vector will access A(imin:imax,kA) in Ai,Ax [pA:pA_end-1], where
// pA = Ap_start [kC] and pA_end = Ap_end [kC].
// The computation of each vector C(:,kC) = A(I,kA) is by done using one of 12
// different cases, depending on the vector, as determined by GB_subref_method.
// Not all vectors in C are computed using the same method.
// Note that J can have duplicates. kC is unique (0:Cnvec-1) but the
// corresponding vector kA in A may repeat, if J has duplicates. Duplicates in
// J are not exploited, since the coarse/fine tasks are constructed by slicing
// slicing the list of vectors Ch of size Cnvec, not the vectors of A.
// Compare this function with GB_ewise_slice, which constructs coarse/fine
// tasks for the eWise operations (C=A+B, C=A.*B, and C<M>=Z).
#define GB_FREE_WORKSPACE \
{ \
GB_WERK_POP (Coarse, int64_t) ; \
GB_FREE_WORK (&Cwork, Cwork_size) ; \
}
#define GB_FREE_ALL \
{ \
GB_FREE_WORKSPACE ; \
GB_FREE_WORK (&TaskList, TaskList_size) ; \
GB_FREE_WORK (&Mark, Mark_size) ; \
GB_FREE_WORK (&Inext, Inext_size) ; \
}
#include "GB_subref.h"
GrB_Info GB_subref_slice // phase 1 of GB_subref
(
// output:
GB_task_struct **p_TaskList, // array of structs
size_t *p_TaskList_size, // size of TaskList
int *p_ntasks, // # of tasks constructed
int *p_nthreads, // # of threads for subref operation
bool *p_post_sort, // true if a final post-sort is needed
int64_t *restrict *p_Mark, // for I inverse, if needed; size avlen
size_t *p_Mark_size,
int64_t *restrict *p_Inext, // for I inverse, if needed; size nI
size_t *p_Inext_size,
int64_t *p_nduplicates, // # of duplicates, if I inverse computed
// from phase0:
const int64_t *restrict Ap_start, // location of A(imin:imax,kA)
const int64_t *restrict Ap_end,
const int64_t Cnvec, // # of vectors of C
const bool need_qsort, // true if C must be sorted
const int Ikind, // GB_ALL, GB_RANGE, GB_STRIDE or GB_LIST
const int64_t nI, // length of I
const int64_t Icolon [3], // for GB_RANGE and GB_STRIDE
// original input:
const int64_t avlen, // A->vlen
const int64_t anz, // nnz (A)
const GrB_Index *I,
GB_Context Context
)
{
//--------------------------------------------------------------------------
// check inputs
//--------------------------------------------------------------------------
ASSERT (p_TaskList != NULL) ;
ASSERT (p_TaskList_size != NULL) ;
ASSERT (p_ntasks != NULL) ;
ASSERT (p_nthreads != NULL) ;
ASSERT (p_post_sort != NULL) ;
ASSERT (p_Mark != NULL) ;
ASSERT (p_Inext != NULL) ;
ASSERT (p_nduplicates != NULL) ;
ASSERT ((Cnvec > 0) == (Ap_start != NULL)) ;
ASSERT ((Cnvec > 0) == (Ap_end != NULL)) ;
(*p_TaskList) = NULL ;
(*p_TaskList_size) = 0 ;
(*p_Mark ) = NULL ;
(*p_Inext ) = NULL ;
int64_t *restrict Mark = NULL ; size_t Mark_size = 0 ;
int64_t *restrict Inext = NULL ; size_t Inext_size = 0 ;
int64_t *restrict Cwork = NULL ; size_t Cwork_size = 0 ;
GB_WERK_DECLARE (Coarse, int64_t) ; // size ntasks1+1
int ntasks1 = 0 ;
GrB_Info info ;
//--------------------------------------------------------------------------
// determine # of threads to use
//--------------------------------------------------------------------------
GB_GET_NTHREADS_MAX (nthreads_max, chunk, Context) ;
//--------------------------------------------------------------------------
// allocate the initial TaskList
//--------------------------------------------------------------------------
// Allocate the TaskList to hold at least 2*ntask0 tasks. It will grow
// later, if needed. Usually, 64*nthreads_max is enough, but in a few cases
// fine tasks can cause this number to be exceeded. If that occurs,
// TaskList is reallocated.
// When the mask is present, it is often fastest to break the work up
// into tasks, even when nthreads_max is 1.
GB_task_struct *restrict TaskList = NULL ; size_t TaskList_size = 0 ;
int max_ntasks = 0 ;
int ntasks0 = (nthreads_max == 1) ? 1 : (32 * nthreads_max) ;
GB_REALLOC_TASK_WORK (TaskList, ntasks0, max_ntasks) ;
//--------------------------------------------------------------------------
// determine if I_inverse can be constructed
//--------------------------------------------------------------------------
// I_inverse_ok is true if I might be inverted. If false, then I will not
// be inverted. I can be inverted only if the workspace for the inverse
// does not exceed nnz(A). Note that if I was provided on input as an
// explicit list, but consists of a contiguous range imin:imax, then Ikind
// is now GB_LIST and the list I is ignored.
// If I_inverse_ok is true, the inverse of I might still not be needed.
// need_I_inverse becomes true if any C(:,kC) = A (I,kA) computation
// requires I inverse.
int64_t I_inverse_limit = GB_IMAX (4096, anz) ;
bool I_inverse_ok = (Ikind == GB_LIST &&
((nI > avlen / 256) || ((nI + avlen) < I_inverse_limit))) ;
bool need_I_inverse = false ;
bool post_sort = false ;
int64_t iinc = Icolon [GxB_INC] ;
//--------------------------------------------------------------------------
// allocate workspace
//--------------------------------------------------------------------------
Cwork = GB_MALLOC_WORK (Cnvec+1, int64_t, &Cwork_size) ;
if (Cwork == NULL)
{
// out of memory
GB_FREE_ALL ;
return (GrB_OUT_OF_MEMORY) ;
}
//--------------------------------------------------------------------------
// estimate the work required for each vector of C
//--------------------------------------------------------------------------
int nthreads_for_Cwork = GB_nthreads (Cnvec, chunk, nthreads_max) ;
int64_t kC ;
#pragma omp parallel for num_threads(nthreads_for_Cwork) schedule(static) \
reduction(||:need_I_inverse)
for (kC = 0 ; kC < Cnvec ; kC++)
{
// jC is the (kC)th vector of C = A(I,J)
// int64_t jC = GBH (Ch, kC) ;
// C(:,kC) = A(I,kA) will be constructed
int64_t pA = Ap_start [kC] ;
int64_t pA_end = Ap_end [kC] ;
int64_t alen = pA_end - pA ; // nnz (A (imin:imax,j))
int64_t work ; // amount of work for C(:,kC) = A (I,kA)
bool this_needs_I_inverse ; // true if this vector needs I inverse
// ndupl in I not yet known; it is found when I is inverted. For
// now, assume I has no duplicate entries. All that is needed for now
// is the work required for each C(:,kC), and whether or not I inverse
// must be created. The # of duplicates has no impact on the I inverse
// decision, and a minor effect on the work (which is ignored).
GB_subref_method (&work, &this_needs_I_inverse, alen, avlen,
Ikind, nI, I_inverse_ok, need_qsort, iinc, 0) ;
// log the result
need_I_inverse = need_I_inverse || this_needs_I_inverse ;
Cwork [kC] = work ;
}
//--------------------------------------------------------------------------
// replace Cwork with its cumulative sum
//--------------------------------------------------------------------------
GB_cumsum (Cwork, Cnvec, NULL, nthreads_for_Cwork, Context) ;
double cwork = (double) Cwork [Cnvec] ;
//--------------------------------------------------------------------------
// determine # of threads and tasks to use for C=A(I,J)
//--------------------------------------------------------------------------
int nthreads = GB_nthreads (cwork, chunk, nthreads_max) ;
ntasks1 = (nthreads == 1) ? 1 : (32 * nthreads) ;
double target_task_size = cwork / (double) (ntasks1) ;
target_task_size = GB_IMAX (target_task_size, chunk) ;
//--------------------------------------------------------------------------
// invert I if required
//--------------------------------------------------------------------------
int64_t ndupl = 0 ;
if (need_I_inverse)
{
GB_OK (GB_I_inverse (I, nI, avlen, &Mark, &Mark_size,
&Inext, &Inext_size, &ndupl, Context)) ;
ASSERT (Mark != NULL) ;
ASSERT (Inext != NULL) ;
}
//--------------------------------------------------------------------------
// check for quick return for a single task
//--------------------------------------------------------------------------
if (Cnvec == 0 || ntasks1 == 1)
{
// construct a single coarse task that computes all of C
TaskList [0].kfirst = 0 ;
TaskList [0].klast = Cnvec-1 ;
// free workspace and return result
GB_FREE_WORKSPACE ;
(*p_TaskList ) = TaskList ;
(*p_TaskList_size) = TaskList_size ;
(*p_ntasks ) = (Cnvec == 0) ? 0 : 1 ;
(*p_nthreads ) = 1 ;
(*p_post_sort ) = false ;
(*p_Mark ) = Mark ;
(*p_Mark_size ) = Mark_size ;
(*p_Inext ) = Inext ;
(*p_Inext_size ) = Inext_size ;
(*p_nduplicates) = ndupl ;
return (GrB_SUCCESS) ;
}
//--------------------------------------------------------------------------
// slice the work into coarse tasks
//--------------------------------------------------------------------------
GB_WERK_PUSH (Coarse, ntasks1 + 1, int64_t) ;
if (Coarse == NULL)
{
// out of memory
GB_FREE_ALL ;
return (GrB_OUT_OF_MEMORY) ;
}
GB_pslice (Coarse, Cwork, Cnvec, ntasks1, false) ;
//--------------------------------------------------------------------------
// construct all tasks, both coarse and fine
//--------------------------------------------------------------------------
int ntasks = 0 ;
for (int t = 0 ; t < ntasks1 ; t++)
{
//----------------------------------------------------------------------
// coarse task computes C (:,k:klast)
//----------------------------------------------------------------------
int64_t k = Coarse [t] ;
int64_t klast = Coarse [t+1] - 1 ;
if (k >= Cnvec)
{
//------------------------------------------------------------------
// all tasks have been constructed
//------------------------------------------------------------------
break ;
}
else if (k < klast)
{
//------------------------------------------------------------------
// coarse task has 2 or more vectors
//------------------------------------------------------------------
// This is a non-empty coarse-grain task that does two or more
// entire vectors of C, vectors k:klast, inclusive.
GB_REALLOC_TASK_WORK (TaskList, ntasks + 1, max_ntasks) ;
TaskList [ntasks].kfirst = k ;
TaskList [ntasks].klast = klast ;
ntasks++ ;
}
else
{
//------------------------------------------------------------------
// coarse task has 0 or 1 vectors
//------------------------------------------------------------------
// As a coarse-grain task, this task is empty or does a single
// vector, k. Vector k must be removed from the work done by this
// and any other coarse-grain task, and split into one or more
// fine-grain tasks.
for (int tt = t ; tt < ntasks1 ; tt++)
{
// remove k from the initial slice tt
if (Coarse [tt] == k)
{
// remove k from task tt
Coarse [tt] = k+1 ;
}
else
{
// break, k not in task tt
break ;
}
}
//------------------------------------------------------------------
// determine the # of fine-grain tasks to create for vector k
//------------------------------------------------------------------
double ckwork = Cwork [k+1] - Cwork [k] ;
int nfine = ckwork / target_task_size ;
nfine = GB_IMAX (nfine, 1) ;
// make the TaskList bigger, if needed
GB_REALLOC_TASK_WORK (TaskList, ntasks + nfine, max_ntasks) ;
//------------------------------------------------------------------
// create the fine-grain tasks
//------------------------------------------------------------------
if (nfine == 1)
{
//--------------------------------------------------------------
// this is a single coarse task for all of vector k
//--------------------------------------------------------------
TaskList [ntasks].kfirst = k ;
TaskList [ntasks].klast = k ;
ntasks++ ;
}
else
{
//--------------------------------------------------------------
// slice vector k into nfine fine tasks
//--------------------------------------------------------------
// There are two kinds of fine tasks, depending on the method
// used to compute C(:,kC) = A(I,kA). If the method iterates
// across all entries in A(imin:imax,kA), then those entries
// are sliced (of size alen). Three methods (1, 2, and 6)
// iterate across all entries in I instead (of size nI).
int64_t pA = Ap_start [k] ;
int64_t pA_end = Ap_end [k] ;
int64_t alen = pA_end - pA ; // nnz (A (imin:imax,j))
int method = GB_subref_method (NULL, NULL, alen, avlen,
Ikind, nI, I_inverse_ok, need_qsort, iinc, ndupl) ;
if (method == 10)
{
// multiple fine tasks operate on a single vector C(:,kC)
// using method 10, and so a post-sort is needed.
post_sort = true ;
}
if (method == 1 || method == 2 || method == 6)
{
// slice I for this task
nfine = GB_IMIN (nfine, nI) ;
nfine = GB_IMAX (nfine, 1) ;
for (int tfine = 0 ; tfine < nfine ; tfine++)
{
// flag this as a fine task, and record the method.
// Methods 1, 2, and 6 slice I, not A(:,kA)
TaskList [ntasks].kfirst = k ;
TaskList [ntasks].klast = -method ;
// do not partition A(:,kA)
TaskList [ntasks].pA = pA ;
TaskList [ntasks].pA_end = pA_end ;
// partition I for this task
GB_PARTITION (TaskList [ntasks].pB,
TaskList [ntasks].pB_end, nI, tfine, nfine) ;
// unused
TaskList [ntasks].pM = -1 ;
TaskList [ntasks].pM_end = -1 ;
// no post sort
TaskList [ntasks].len = 0 ;
ntasks++ ;
}
}
else
{
// slice A(:,kA) for this task
nfine = GB_IMIN (nfine, alen) ;
nfine = GB_IMAX (nfine, 1) ;
bool reverse = (method == 8 || method == 9) ;
for (int tfine = 0 ; tfine < nfine ; tfine++)
{
// flag this as a fine task, and record the method.
// These methods slice A(:,kA). Methods 8 and 9
// must do so in reverse order.
TaskList [ntasks].kfirst = k ;
TaskList [ntasks].klast = -method ;
// partition the items for this task
GB_PARTITION (TaskList [ntasks].pA,
TaskList [ntasks].pA_end, alen,
(reverse) ? (nfine-tfine-1) : tfine, nfine) ;
TaskList [ntasks].pA += pA ;
TaskList [ntasks].pA_end += pA ;
// do not partition I
TaskList [ntasks].pB = 0 ;
TaskList [ntasks].pB_end = nI ;
// unused
TaskList [ntasks].pM = -1 ;
TaskList [ntasks].pM_end = -1 ;
// flag the task that does the post sort
TaskList [ntasks].len = (tfine == 0 && method == 10) ;
ntasks++ ;
}
}
}
}
}
ASSERT (ntasks > 0) ;
//--------------------------------------------------------------------------
// free workspace and return result
//--------------------------------------------------------------------------
GB_FREE_WORKSPACE ;
(*p_TaskList ) = TaskList ;
(*p_TaskList_size) = TaskList_size ;
(*p_ntasks ) = ntasks ;
(*p_nthreads ) = nthreads ;
(*p_post_sort ) = post_sort ;
(*p_Mark ) = Mark ;
(*p_Mark_size ) = Mark_size ;
(*p_Inext ) = Inext ;
(*p_Inext_size ) = Inext_size ;
(*p_nduplicates) = ndupl ;
return (GrB_SUCCESS) ;
}
|