File: GB_transpose.c

package info (click to toggle)
suitesparse-graphblas 7.4.0%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 67,112 kB
  • sloc: ansic: 1,072,243; cpp: 8,081; sh: 512; makefile: 506; asm: 369; python: 125; awk: 10
file content (999 lines) | stat: -rw-r--r-- 38,034 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
//------------------------------------------------------------------------------
// GB_transpose: C=A' or C=op(A'), with typecasting
//------------------------------------------------------------------------------

// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

//------------------------------------------------------------------------------

// CALLS:     GB_builder

// Transpose a matrix, C=A', and optionally apply a unary operator and/or
// typecast the values.  The transpose may be done in-place, in which case C or
// A are modified in-place.

// There are two ways to use this method:
//  C = A'      C and A are different
//  C = C'      C is transposed in-place, (C==A aliased)

// In both cases, the header for C and A must already be allocated (either
// static or dynamic).   A is never modified, unless C==A.  C and A cannot be
// NULL on input.  If in place (C == A) then C and A is a valid matrix on input
// (the input matrix A).  If C != A, the contents of C are not defined on input,
// and any prior content is freed.  Either header may be static or dynamic.

// The input matrix A may have shallow components (even if in-place), and the
// output C may also have shallow components (even if the input matrix is not
// shallow).

// This function is CSR/CSC agnostic; it sets the output matrix format from
// C_is_csc but otherwise ignores the CSR/CSC type of A and C.

// The bucket sort is parallel, but not highly scalable.  If e=nnz(A) and A is
// m-by-n, then at most O(e/n) threads are used.  The GB_builder method is more
// scalable, but not as fast with a modest number of threads.

#define GB_FREE_WORKSPACE               \
{                                       \
    GB_FREE (&iwork, iwork_size) ;      \
    GB_FREE (&jwork, jwork_size) ;      \
    GB_FREE (&Swork, Swork_size) ;      \
    GB_WERK_POP (Count, int64_t) ;      \
}

#define GB_FREE_ALL                     \
{                                       \
    GB_FREE_WORKSPACE ;                 \
    GB_Matrix_free (&T) ;               \
    /* freeing C also frees A if transpose is done in-place */ \
    GB_phybix_free (C) ;                \
}

#include "GB_transpose.h"
#include "GB_build.h"
#include "GB_apply.h"

//------------------------------------------------------------------------------
// GB_transpose
//------------------------------------------------------------------------------

GrB_Info GB_transpose           // C=A', C=(ctype)A' or C=op(A')
(
    GrB_Matrix C,               // output matrix C, possibly modified in-place
    GrB_Type ctype,             // desired type of C; if NULL use A->type.
                                // ignored if op is present (cast to op->ztype)
    const bool C_is_csc,        // desired CSR/CSC format of C
    const GrB_Matrix A,         // input matrix; C == A if done in place
        // no operator is applied if op is NULL
        const GB_Operator op_in,    // unary/idxunop/binop to apply
        const GrB_Scalar scalar,    // scalar to bind to binary operator
        bool binop_bind1st,         // if true, binop(x,A) else binop(A,y)
        bool flipij,                // if true, flip i,j for user idxunop
    GB_Context Context
)
{

    //--------------------------------------------------------------------------
    // check inputs and determine if transpose is done in-place
    //--------------------------------------------------------------------------

    GrB_Info info ;
    ASSERT (C != NULL) ;
    ASSERT (A != NULL) ;
    bool in_place = (A == C) ;
    GB_WERK_DECLARE (Count, int64_t) ;
    int64_t *iwork = NULL ; size_t iwork_size = 0 ;
    int64_t *jwork = NULL ; size_t jwork_size = 0 ;
    GB_void *Swork = NULL ; size_t Swork_size = 0 ;
    struct GB_Matrix_opaque T_header ;
    GrB_Matrix T = NULL ;
    GB_CLEAR_STATIC_HEADER (T, &T_header) ;

    ASSERT_MATRIX_OK (A, "A input for GB_transpose", GB0) ;
    ASSERT_TYPE_OK_OR_NULL (ctype, "ctype for GB_transpose", GB0) ;
    ASSERT_OP_OK_OR_NULL (op_in, "unop/binop for GB_transpose", GB0) ;
    ASSERT_SCALAR_OK_OR_NULL (scalar, "scalar for GB_transpose", GB0) ;

    if (in_place)
    { 
        GBURBLE ("(in-place transpose) ") ;
    }

    // get the current sparsity control of A
    float A_hyper_switch = A->hyper_switch ;
    float A_bitmap_switch = A->bitmap_switch ;
    int A_sparsity_control = A->sparsity_control ;
    int64_t avlen = A->vlen ;
    int64_t avdim = A->vdim ;

    // wait if A has pending tuples or zombies; leave jumbled unless avdim == 1
    if (GB_PENDING (A) || GB_ZOMBIES (A) || (avdim == 1 && GB_JUMBLED (A)))
    { 
        GB_OK (GB_wait (A, "A", Context)) ;
    }
    ASSERT (!GB_PENDING (A)) ;
    ASSERT (!GB_ZOMBIES (A)) ;
    ASSERT (GB_JUMBLED_OK (A)) ;
    ASSERT (GB_IMPLIES (avdim == 1, !GB_JUMBLED (A))) ;

    //--------------------------------------------------------------------------
    // get A
    //--------------------------------------------------------------------------

    GrB_Type atype = A->type ;
    bool A_is_bitmap = GB_IS_BITMAP (A) ;
    bool A_is_hyper  = GB_IS_HYPERSPARSE (A) ;
    int64_t anz = GB_nnz (A) ;
    int64_t anz_held = GB_nnz_held (A) ;
    int64_t anvec = A->nvec ;
    int64_t anvals = A->nvals ;

    //--------------------------------------------------------------------------
    // determine the max number of threads to use
    //--------------------------------------------------------------------------

    GB_GET_NTHREADS_MAX (nthreads_max, chunk, Context) ;

    //--------------------------------------------------------------------------
    // determine the type of C and get the unary, idxunop, binary operator
    //--------------------------------------------------------------------------

    // If a unary, idxunop, or binary operator is present, C is always returned
    // as the ztype of the operator.  The input ctype is ignored.

    GB_Operator op = NULL ;
    GB_Opcode opcode = GB_NOP_code ;

    if (op_in == NULL)
    {
        // no operator
        if (ctype == NULL)
        { 
            // no typecasting if ctype is NULL
            ctype = atype ;
        }
    }
    else
    {
        opcode = op_in->opcode ;
        if (GB_IS_UNARYOP_CODE (opcode))
        {
            // get the unary operator
            if (atype == op_in->xtype && opcode == GB_IDENTITY_unop_code)
            { 
                // op is a built-in unary identity operator, with the same type
                // as A, so do not apply the operator and do not typecast.  op
                // is NULL.
                ctype = atype ;
            }
            else
            { 
                // apply the operator, z=unop(x)
                op = op_in ;
                ctype = op->ztype ;
            }
        }
        else // binary or idxunop
        { 
            // get the binary or idxunop operator: only GB_apply calls
            // GB_transpose with op_in, and it ensures this condition holds:
            // first(A,y), second(x,A) have been renamed to identity(A), and
            // PAIR has been renamed one(A), so these cases do not occur here.
            ASSERT (!((opcode == GB_PAIR_binop_code) ||
                      (opcode == GB_FIRST_binop_code  && !binop_bind1st) ||
                      (opcode == GB_SECOND_binop_code &&  binop_bind1st))) ;
            // apply the operator, z=binop(A,y), binop(x,A), or idxunop(A,y)
            op = op_in ;
            ctype = op->ztype ;
        }
    }

    bool user_idxunop = (opcode == GB_USER_idxunop_code) ;

    //--------------------------------------------------------------------------
    // check for positional operators
    //--------------------------------------------------------------------------

    bool op_is_positional = GB_OPCODE_IS_POSITIONAL (opcode) ;
    GB_Operator save_op = op ;
    if (op_is_positional)
    { 
        // do not apply the positional op until after the transpose;
        // replace op with the ONE operator, as a placeholder.  C will be
        // constructed as iso, and needs to be expanded to non-iso when done.
        ASSERT (ctype == GrB_INT64 || ctype == GrB_INT32 || ctype == GrB_BOOL) ;
        op = (GB_Operator) GB_unop_one (ctype->code) ;
    }
    else if (user_idxunop)
    {
        // do not apply the user op until after the transpose; replace with
        // no operator at all, with no typecast
        op = NULL ;
        ctype = atype ;
    }

    //--------------------------------------------------------------------------
    // determine the iso status of C
    //--------------------------------------------------------------------------

    size_t csize = ctype->size ;

    ASSERT (GB_IMPLIES (avlen == 0 || avdim == 0, anz == 0)) ;
    GB_iso_code C_code_iso = GB_iso_unop_code (A, op, binop_bind1st) ;
    bool C_iso = (C_code_iso != GB_NON_ISO) ;

    ASSERT (GB_IMPLIES (A->iso, C_iso)) ;

    if (C_iso && !op_is_positional)
    { 
        GBURBLE ("(iso transpose) ") ;
    }
    else
    {
        GBURBLE ("(transpose) ") ;
    }

    //==========================================================================
    // T = A', T = (ctype) A', or T = op (A')
    //==========================================================================

    if (anz == 0)
    { 

        //----------------------------------------------------------------------
        // A is empty
        //----------------------------------------------------------------------

        // create a new empty matrix T, with the new type and dimensions.
        // set T->iso = false   OK
        GB_OK (GB_new_bix (&T, // hyper, existing header
            ctype, avdim, avlen, GB_Ap_calloc, C_is_csc, GxB_HYPERSPARSE,
            true, A_hyper_switch, 1, 1, true, false, Context)) ;

    }
    else if (A_is_bitmap || GB_as_if_full (A))
    {

        //----------------------------------------------------------------------
        // transpose a bitmap/as-if-full matrix or vector
        //----------------------------------------------------------------------

        // A is either bitmap or as-is-full (full, or sparse or hypersparse
        // with all entries present, no zombies, no pending tuples, and not
        // jumbled).  T = A' is either bitmap or full.

        GBURBLE ("(bitmap/full transpose) ") ;
        int T_sparsity = (A_is_bitmap) ? GxB_BITMAP : GxB_FULL ;
        bool T_cheap =                  // T can be done quickly if:
            (avlen == 1 || avdim == 1)      // A is a row or column vector,
            && op == NULL                   // no operator to apply,
            && atype == ctype ;             // and no typecasting

        // allocate T
        if (T_cheap)
        { 
            // just initialize the static header of T, not T->b or T->x
            GBURBLE ("(cheap transpose) ") ;
            info = GB_new (&T, // bitmap or full, existing header
                ctype, avdim, avlen, GB_Ap_null, C_is_csc,
                T_sparsity, A_hyper_switch, 1, Context) ;
            ASSERT (info == GrB_SUCCESS) ;
        }
        else
        { 
            // allocate all of T, including T->b and T->x
            // set T->iso = C_iso   OK
            GB_OK (GB_new_bix (&T, // bitmap or full, existing header
                ctype, avdim, avlen, GB_Ap_null, C_is_csc, T_sparsity, true,
                A_hyper_switch, 1, anz_held, true, C_iso, Context)) ;
        }

        T->magic = GB_MAGIC ;
        if (T_sparsity == GxB_BITMAP)
        { 
            T->nvals = anvals ;     // for bitmap case only
        }

        //----------------------------------------------------------------------
        // T = A'
        //----------------------------------------------------------------------

        int nthreads = GB_nthreads (anz_held + anvec, chunk, nthreads_max) ;

        if (T_cheap)
        {
            // no work to do.  Transposing does not change A->b or A->x
            T->b = A->b ; T->b_size = A->b_size ;
            T->x = A->x ; T->x_size = A->x_size ;
            if (in_place)
            { 
                // transplant A->b and A->x into T
                T->b_shallow = A->b_shallow ;
                T->x_shallow = A->x_shallow ;
                A->b = NULL ;
                A->x = NULL ;
            }
            else
            { 
                // T is a purely shallow copy of A 
                T->b_shallow = (A->b != NULL) ;
                T->x_shallow = true ;
            }
            T->iso = A->iso ;   // OK
        }
        else if (op == NULL)
        { 
            // do not apply an operator; optional typecast to T->type
            GB_transpose_ix (T, A, NULL, NULL, 0, nthreads) ;
        }
        else
        { 
            // apply an operator, T has type op->ztype
            GB_transpose_op (T, C_code_iso, op, scalar, binop_bind1st, A,
                NULL, NULL, 0, nthreads) ;
        }

        ASSERT_MATRIX_OK (T, "T dense/bitmap", GB0) ;
        ASSERT (!GB_JUMBLED (T)) ;

    }
    else if (avdim == 1)
    {

        //----------------------------------------------------------------------
        // transpose a "column" vector into a "row"
        //----------------------------------------------------------------------

        // transpose a vector (avlen-by-1) into a "row" matrix (1-by-avlen).
        // A must be sorted first.

        GBURBLE ("(sparse vector transpose (a)) ") ;
        ASSERT_MATRIX_OK (A, "the vector A must already be sorted", GB0) ;
        ASSERT (!GB_JUMBLED (A)) ;

        //----------------------------------------------------------------------
        // allocate T
        //----------------------------------------------------------------------

        // Initialized the header of T, with no content, and initialize the
        // type and dimension of T.  T is hypersparse.

        info = GB_new (&T, // hyper; existing header
            ctype, 1, avlen, GB_Ap_null, C_is_csc,
            GxB_HYPERSPARSE, A_hyper_switch, 0, Context) ;
        ASSERT (info == GrB_SUCCESS) ;

        // allocate T->p, T->i, and optionally T->x, but not T->h
        int64_t tplen = GB_IMAX (1, anz) ;
        T->p = GB_MALLOC (tplen+1, int64_t, &(T->p_size)) ;
        T->i = GB_MALLOC (anz    , int64_t, &(T->i_size)) ;
        bool allocate_Tx = (op != NULL || C_iso) || (ctype != atype) ;
        if (allocate_Tx)
        { 
            // allocate new space for the new typecasted numerical values of T
            T->x = GB_XALLOC (false, C_iso, anz, csize, &(T->x_size)) ; // x:OK
        }
        if (T->p == NULL || T->i == NULL || (allocate_Tx && T->x == NULL))
        { 
            // out of memory
            GB_FREE_ALL ;
            return (GrB_OUT_OF_MEMORY) ;
        }

        //----------------------------------------------------------------------
        // numerical values of T: apply the op, typecast, or make shallow copy
        //----------------------------------------------------------------------

        // numerical values: apply the operator, typecast, or make shallow copy
        if (op != NULL || C_iso)
        { 
            // T->x = unop (A), binop (A,scalar), or binop (scalar,A), or
            // compute the iso value of T = 1, A, or scalar, without any op
            info = GB_apply_op ((GB_void *) T->x, ctype, C_code_iso, op,
                scalar, binop_bind1st, flipij, A, Context) ;
            ASSERT (info == GrB_SUCCESS) ;
        }
        else if (ctype != atype)
        { 
            // copy the values from A into T and cast from atype to ctype
            GB_cast_matrix (T, A, Context) ;
        }
        else
        { 
            // no type change; numerical values of T are a shallow copy of A.
            ASSERT (!allocate_Tx) ;
            T->x = A->x ; T->x_size = A->x_size ;
            if (in_place)
            {
                // transplant A->x as T->x
                T->x_shallow = A->x_shallow ;
                A->x = NULL ;
            }
            else
            {
                // T->x is a shallow copy of A->x
                T->x_shallow = true ;
            }
        }

        // each entry in A becomes a non-empty vector in T;
        // T is a hypersparse 1-by-avlen matrix

        // transplant or shallow-copy A->i as the new T->h
        T->h = A->i ; T->h_size = A->i_size ;
        if (in_place)
        { 
            // transplant A->i as T->h
            T->h_shallow = A->i_shallow ;
            A->i = NULL ;
        }
        else
        { 
            // T->h is a shallow copy of A->i
            T->h_shallow = true ;
        }

        // T->p = 0:anz and T->i = zeros (1,anz), newly allocated
        T->plen = tplen ;
        T->nvec = anz ;
        T->nvec_nonempty = anz ;

        // fill the vector pointers T->p
        int nthreads = GB_nthreads (anz, chunk, nthreads_max) ;
        int64_t k ;
        #pragma omp parallel for num_threads(nthreads) schedule(static)
        for (k = 0 ; k < anz ; k++)
        { 
            T->i [k] = 0 ;
            T->p [k] = k ;
        }
        T->p [anz] = anz ;

        T->iso = C_iso ;
        T->nvals = anz ;
        T->magic = GB_MAGIC ;

    }
    else if (avlen == 1)
    {

        //----------------------------------------------------------------------
        // transpose a "row" into a "column" vector
        //----------------------------------------------------------------------

        // transpose a "row" matrix (1-by-avdim) into a vector (avdim-by-1).
        // if A->vlen is 1, all vectors of A are implicitly sorted
        GBURBLE ("(sparse vector transpose (b)) ") ;
        ASSERT_MATRIX_OK (A, "1-by-n input A already sorted", GB0) ;

        //----------------------------------------------------------------------
        // allocate workspace, if needed
        //----------------------------------------------------------------------

        int ntasks = 0 ;
        int nth = GB_nthreads (avdim, chunk, nthreads_max) ;
        if (nth > 1 && !A_is_hyper)
        {
            // ntasks and Count are not needed if nth == 1
            ntasks = 8 * nth ;
            ntasks = GB_IMIN (ntasks, avdim) ;
            ntasks = GB_IMAX (ntasks, 1) ;
            GB_WERK_PUSH (Count, ntasks+1, int64_t) ;
            if (Count == NULL)
            { 
                // out of memory
                GB_FREE_ALL ;
                return (GrB_OUT_OF_MEMORY) ;
            }
        }

        // Allocate the header of T, with no content
        // and initialize the type and dimension of T.
        info = GB_new (&T, // sparse; existing header
            ctype, avdim, 1, GB_Ap_null, C_is_csc,
            GxB_SPARSE, A_hyper_switch, 0, Context) ;
        ASSERT (info == GrB_SUCCESS) ;

        T->iso = C_iso ;    // OK

        // allocate new space for the values and pattern
        T->p = GB_CALLOC (2, int64_t, &(T->p_size)) ;
        if (!A_is_hyper)
        { 
            // A is sparse, so new space is needed for T->i
            T->i = GB_MALLOC (anz, int64_t, &(T->i_size)) ;
        }
        bool allocate_Tx = (op != NULL || C_iso) || (ctype != atype) ;
        if (allocate_Tx)
        { 
            // allocate new space for the new typecasted numerical values of T
            T->x = GB_XALLOC (false, C_iso, anz, csize, &(T->x_size)) ; // x:OK
        }

        if (T->p == NULL || (T->i == NULL && !A_is_hyper) ||
            (T->x == NULL && allocate_Tx))
        { 
            // out of memory
            GB_FREE_ALL ;
            return (GrB_OUT_OF_MEMORY) ;
        }

        //----------------------------------------------------------------------
        // numerical values of T: apply the op, typecast, or make shallow copy
        //----------------------------------------------------------------------

        // numerical values: apply the operator, typecast, or make shallow copy
        if (op != NULL || C_iso)
        { 
            // T->x = unop (A), binop (A,scalar), or binop (scalar,A), or
            // compute the iso value of T = 1, A, or scalar, without any op
            info = GB_apply_op ((GB_void *) T->x, ctype, C_code_iso, op,
                scalar, binop_bind1st, flipij, A, Context) ;
            ASSERT (info == GrB_SUCCESS) ;
        }
        else if (ctype != atype)
        { 
            // copy the values from A into T and cast from atype to ctype
            GB_cast_matrix (T, A, Context) ;
        }
        else
        { 
            // no type change; numerical values of T are a shallow copy of A.
            ASSERT (!allocate_Tx) ;
            T->x = A->x ; T->x_size = A->x_size ;
            if (in_place)
            { 
                // transplant A->x as T->x
                T->x_shallow = A->x_shallow ;
                A->x = NULL ;
            }
            else
            { 
                // T->x is a shallow copy of A->x
                T->x_shallow = true ;
            }
        }

        //----------------------------------------------------------------------
        // compute T->i
        //----------------------------------------------------------------------

        if (A_is_hyper)
        { 

            //------------------------------------------------------------------
            // each non-empty vector in A becomes an entry in T
            //------------------------------------------------------------------

            T->i = A->h ; T->i_size = A->h_size ;
            if (in_place)
            { 
                // transplant A->h as T->i
                T->i_shallow = A->h_shallow ;
                A->h = NULL ;
            }
            else
            { 
                // T->i is a shallow copy of A->h
                T->i_shallow = true ;
            }

        }
        else
        {

            //------------------------------------------------------------------
            // find the non-empty vectors of A, which become entries in T
            //------------------------------------------------------------------

            if (nth == 1)
            {

                //--------------------------------------------------------------
                // construct T->i with a single thread
                //--------------------------------------------------------------

                int64_t k = 0 ;
                for (int64_t j = 0 ; j < avdim ; j++)
                {
                    if (A->p [j] < A->p [j+1])
                    { 
                        T->i [k++] = j ;
                    }
                }
                ASSERT (k == anz) ;

            }
            else
            {

                //--------------------------------------------------------------
                // construct T->i in parallel
                //--------------------------------------------------------------

                int tid ;
                #pragma omp parallel for num_threads(nth) schedule(dynamic,1)
                for (tid = 0 ; tid < ntasks ; tid++)
                {
                    int64_t jstart, jend, k = 0 ;
                    GB_PARTITION (jstart, jend, avdim, tid, ntasks) ;
                    for (int64_t j = jstart ; j < jend ; j++)
                    {
                        if (A->p [j] < A->p [j+1])
                        { 
                            k++ ;
                        }
                    }
                    Count [tid] = k ;
                }

                GB_cumsum (Count, ntasks, NULL, 1, NULL) ;
                ASSERT (Count [ntasks] == anz) ;

                #pragma omp parallel for num_threads(nth) schedule(dynamic,1)
                for (tid = 0 ; tid < ntasks ; tid++)
                {
                    int64_t jstart, jend, k = Count [tid] ;
                    GB_PARTITION (jstart, jend, avdim, tid, ntasks) ;
                    for (int64_t j = jstart ; j < jend ; j++)
                    {
                        if (A->p [j] < A->p [j+1])
                        { 
                            T->i [k++] = j ;
                        }
                    }
                }
            }

            #ifdef GB_DEBUG
            int64_t k = 0 ;
            for (int64_t j = 0 ; j < avdim ; j++)
            {
                if (A->p [j] < A->p [j+1])
                {
                    ASSERT (T->i [k] == j) ;
                    k++ ;
                }
            }
            ASSERT (k == anz) ;
            #endif
        }

        //---------------------------------------------------------------------
        // vector pointers of T
        //---------------------------------------------------------------------

        // T->p = [0 anz]
        ASSERT (T->plen == 1) ;
        ASSERT (T->nvec == 1) ;
        T->nvec_nonempty = (anz == 0) ? 0 : 1 ;
        T->p [1] = anz ;
        T->nvals = anz ;
        T->magic = GB_MAGIC ;
        ASSERT (!GB_JUMBLED (T)) ;

    }
    else
    {

        //----------------------------------------------------------------------
        // transpose a general sparse or hypersparse matrix
        //----------------------------------------------------------------------

        ASSERT_MATRIX_OK (A, "A for GB_transpose", GB0) ;

        // T=A' with optional typecasting, or T=op(A')

        //----------------------------------------------------------------------
        // select the method
        //----------------------------------------------------------------------

        int nworkspaces_bucket, nthreads_bucket ;
        bool use_builder = GB_transpose_method (A,
            &nworkspaces_bucket, &nthreads_bucket, Context) ;

        //----------------------------------------------------------------------
        // transpose the matrix with the selected method
        //----------------------------------------------------------------------

        if (use_builder)
        {

            //------------------------------------------------------------------
            // transpose via GB_builder
            //------------------------------------------------------------------

            GBURBLE ("(builder transpose) ") ;

            //------------------------------------------------------------------
            // allocate and create iwork
            //------------------------------------------------------------------

            // allocate iwork of size anz
            iwork = GB_MALLOC (anz, int64_t, &iwork_size) ;
            if (iwork == NULL)
            { 
                // out of memory
                GB_FREE_ALL ;
                return (GrB_OUT_OF_MEMORY) ;
            }

            // Construct the "row" indices of C, which are "column" indices of
            // A.  This array becomes the permanent T->i on output.

            GB_OK (GB_extract_vector_list (iwork, A, Context)) ;

            //------------------------------------------------------------------
            // allocate the output matrix and additional space (jwork and Swork)
            //------------------------------------------------------------------

            // initialize the header of T, with no content,
            // and initialize the type and dimension of T.

            info = GB_new (&T, // hyper, existing header
                ctype, avdim, avlen, GB_Ap_null, C_is_csc,
                GxB_HYPERSPARSE, A_hyper_switch, 0, Context) ;
            ASSERT (info == GrB_SUCCESS) ;

            // if in_place, the prior A->p and A->h can now be freed
            if (in_place)
            { 
                if (!A->p_shallow) GB_FREE (&A->p, A->p_size) ;
                if (!A->h_shallow) GB_FREE (&A->h, A->h_size) ;
            }

            GB_void *S_input = NULL ;

            // for the GB_builder method, if the transpose is done in-place and
            // A->i is not shallow, A->i can be used and then freed.
            // Otherwise, A->i is not modified at all.
            bool ok = true ;
            bool recycle_Ai = (in_place && !A->i_shallow) ;
            if (!recycle_Ai)
            { 
                // allocate jwork of size anz
                jwork = GB_MALLOC (anz, int64_t, &jwork_size) ;
                ok = ok && (jwork != NULL) ;
            }

            if (op != NULL && !C_iso)
            { 
                Swork = (GB_void *) GB_XALLOC (false, C_iso, anz,   // x:OK
                    csize, &Swork_size) ;
                ok = ok && (Swork != NULL) ;
            }

            if (!ok)
            { 
                // out of memory
                GB_FREE_ALL ;
                return (GrB_OUT_OF_MEMORY) ;
            }

            //------------------------------------------------------------------
            // construct jwork and Swork
            //------------------------------------------------------------------

            // "row" indices of A become "column" indices of C
            if (recycle_Ai)
            { 
                // A->i is used as workspace for the "column" indices of C.
                // jwork is A->i, and is freed by GB_builder.
                jwork = A->i ;
                jwork_size = A->i_size ;
                A->i = NULL ;
                ASSERT (in_place) ;
            }
            else
            { 
                // copy A->i into jwork, making a deep copy.  jwork is freed by
                // GB_builder.  A->i is not modified, even if out of memory.
                GB_memcpy (jwork, A->i, anz * sizeof (int64_t), nthreads_max) ;
            }

            // numerical values: apply the op, typecast, or make shallow copy
            GrB_Type stype ;
            GB_void sscalar [GB_VLA(csize)] ;
            if (C_iso)
            { 
                // apply the op to the iso scalar
                GB_iso_unop (sscalar, ctype, C_code_iso, op, A, scalar) ;
                S_input = sscalar ;     // S_input is used instead of Swork
                Swork = NULL ;
                stype = ctype ;
            }
            else if (op != NULL)
            { 
                // Swork = op (A)
                info = GB_apply_op (Swork, ctype, C_code_iso, op, scalar,
                    binop_bind1st, flipij, A, Context) ;
                ASSERT (info == GrB_SUCCESS) ;
                // GB_builder will not need to typecast Swork to T->x, and it
                // may choose to transplant it into T->x
                S_input = NULL ;        // Swork is used instead of S_input
                stype = ctype ;
            }
            else
            { 
                // GB_builder will typecast S_input from atype to ctype if
                // needed.  S_input is a shallow copy of Ax, and must not be
                // modified.
                ASSERT (!C_iso) ;
                ASSERT (!A->iso) ;
                S_input = (GB_void *) A->x ; // S_input is used instead of Swork
                Swork = NULL ;
                stype = atype ;
            }

            //------------------------------------------------------------------
            // build the matrix: T = (ctype) A' or op ((xtype) A')
            //------------------------------------------------------------------

            // internally, jwork is freed and then T->x is allocated, so the
            // total memory usage is anz * max (csize, sizeof(int64_t)).  T is
            // always hypersparse.  Either T, Swork, and S_input are all iso,
            // or all non-iso, depending on C_iso.

            GB_OK (GB_builder (
                T,          // create T using a static header
                ctype,      // T is of type ctype
                avdim,      // T->vlen = A->vdim, always > 1
                avlen,      // T->vdim = A->vlen, always > 1
                C_is_csc,   // T has the same CSR/CSC format as C
                &iwork,     // iwork_handle, becomes T->i on output
                &iwork_size,
                &jwork,     // jwork_handle, freed on output
                &jwork_size,
                &Swork,     // Swork_handle, freed on output
                &Swork_size,
                false,      // tuples are not sorted on input
                true,       // tuples have no duplicates
                anz,        // size of iwork, jwork, and Swork
                true,       // is_matrix: unused
                NULL, NULL, // original I,J indices: not used here
                S_input,    // array of values of type stype, not modified
                C_iso,      // iso property of T is the same as C->iso
                anz,        // number of tuples
                NULL,       // no dup operator needed (input has no duplicates)
                stype,      // type of S_input or Swork
                false,      // no burble (already burbled above)
                Context
            )) ;

            // GB_builder always frees jwork, and either frees iwork or
            // transplants it in to T->i and sets iwork to NULL.  So iwork and
            // jwork are always NULL on output.  GB_builder does not modify
            // S_input.
            ASSERT (iwork == NULL && jwork == NULL && Swork == NULL) ;
            ASSERT (!GB_JUMBLED (T)) ;

        }
        else
        { 

            //------------------------------------------------------------------
            // transpose via bucket sort
            //------------------------------------------------------------------

            // T = A' and typecast to ctype
            GB_OK (GB_transpose_bucket (T, C_code_iso, ctype, C_is_csc, A,
                op, scalar, binop_bind1st,
                nworkspaces_bucket, nthreads_bucket, Context)) ;

            ASSERT_MATRIX_OK (T, "T from bucket", GB0) ;
            ASSERT (GB_JUMBLED_OK (T)) ;
        }
    }

    //==========================================================================
    // free workspace, apply positional op, and transplant/conform T into C
    //==========================================================================

    //--------------------------------------------------------------------------
    // free workspace
    //--------------------------------------------------------------------------

    GB_FREE_WORKSPACE ;
    if (in_place)
    { 
        // free prior space of A, if transpose is done in-place
        GB_phybix_free (A) ;
    }

    //--------------------------------------------------------------------------
    // transplant T into the result C
    //--------------------------------------------------------------------------

    // transplant the control settings from A to C
    C->hyper_switch = A_hyper_switch ;
    C->bitmap_switch = A_bitmap_switch ;
    C->sparsity_control = A_sparsity_control ;
    GB_OK (GB_transplant (C, ctype, &T, Context)) ;
    ASSERT_MATRIX_OK (C, "C transplanted in GB_transpose", GB0) ;
    ASSERT_TYPE_OK (ctype, "C type in GB_transpose", GB0) ;

    //--------------------------------------------------------------------------
    // apply a positional operator or user idxunop after transposing the matrix
    //--------------------------------------------------------------------------

    op = save_op ;
    if (op_is_positional)
    {
        if (C->iso)
        { 
            // If C was constructed as iso; it needs to be expanded first,
            // but do not initialize the values.  These are computed by
            // GB_apply_op below.
            // set C->iso = false    OK: no need to burble
            GB_OK (GB_convert_any_to_non_iso (C, false, Context)) ;
        }

        // the positional unary op is applied in-place: C->x = op (C)
        GB_OK (GB_apply_op ((GB_void *) C->x, ctype, GB_NON_ISO, op,
            scalar, binop_bind1st, flipij, C, Context)) ;

    }
    else if (user_idxunop)
    { 

        if (C->iso)
        { 
            // If C was constructed as iso; it needs to be expanded and
            // initialized first.
            GB_OK (GB_convert_any_to_non_iso (C, true, Context)) ;
        }

        if (C->type == op->ztype)
        { 
            // the user-defined index unary op is applied in-place: C->x = op
            // (C) where the type of C does not change
            GB_OK (GB_apply_op ((GB_void *) C->x, ctype, GB_NON_ISO, op,
                scalar, binop_bind1st, flipij, C, Context)) ;
        }
        else // op is a user-defined index unary operator
        { 
            // apply the operator to the transposed matrix:
            // C = op (C), but not in-place since the type of C is changing
            ctype = op->ztype ;
            csize = ctype->size ;
            size_t Cx_size = 0 ;
            GB_void *Cx_new = NULL ;
            if (GB_IS_BITMAP (C))
            { 
                // calloc the space so the new C->x has no uninitialized space
                Cx_new = GB_CALLOC (anz_held*csize, GB_void, &Cx_size) ; // x:OK
            }
            else
            { 
                // malloc is fine; all C->x will be written
                Cx_new = GB_MALLOC (anz_held*csize, GB_void, &Cx_size) ; // x:OK
            }
            if (Cx_new == NULL)
            { 
                // out of memory
                GB_FREE_ALL ;
                return (GrB_OUT_OF_MEMORY) ;
            }
            // Cx_new = op (C)
            GB_OK (GB_apply_op (Cx_new, ctype, GB_NON_ISO, op,
                scalar, false, flipij, C, Context)) ;
            // transplant Cx_new as C->x and finalize the type of C
            GB_FREE (&(C->x), C->x_size) ;
            C->x = Cx_new ;
            C->x_size = Cx_size ;
            C->type = ctype ;
            C->iso = false ;
        }
    }

    //--------------------------------------------------------------------------
    // conform the result to the desired sparsity structure of A
    //--------------------------------------------------------------------------

    ASSERT_MATRIX_OK (C, "C to conform in GB_transpose", GB0) ;
    GB_OK (GB_conform (C, Context)) ;
    ASSERT_MATRIX_OK (C, "C output of GB_transpose", GB0) ;
    return (GrB_SUCCESS) ;
}