1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
|
//------------------------------------------------------------------------------
// GB_transpose_op: transpose, typecast, and apply an operator to a matrix
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// C = op (A')
// The values of A are typecasted to op->xtype and then passed to the unary
// operator. The output is assigned to C, which must be of type op->ztype; no
// output typecasting done with the output of the operator.
// If the op is positional, it has been replaced with the unary op
// GxB_ONE_INT64, as a placeholder, and C_code_iso is GB_ISO_1. The true op
// is applied later, in GB_transpose.
// If A is sparse or hypersparse
// The pattern of C is constructed. C is sparse.
// Workspaces and A_slice are non-NULL.
// This method is parallel, but not highly scalable. It uses only
// nthreads = nnz(A)/(A->vlen) threads.
// If A is full or as-if-full:
// The pattern of C is not constructed. C is full.
// Workspaces and A_slice are NULL.
// This method is parallel and fully scalable.
// If A is bitmap:
// C->b is constructed. C is bitmap.
// Workspaces and A_slice are NULL.
// This method is parallel and fully scalable.
#include "GB_transpose.h"
#include "GB_binop.h"
#ifndef GBCUDA_DEV
#include "GB_unop__include.h"
#include "GB_binop__include.h"
#endif
void GB_transpose_op // transpose, typecast, and apply operator to a matrix
(
GrB_Matrix C, // output matrix
const GB_iso_code C_code_iso, // iso code for C
// no operator is applied if op is NULL
const GB_Operator op, // unary/idxunop/binop to apply
const GrB_Scalar scalar, // scalar to bind to binary operator
bool binop_bind1st, // if true, binop(x,A) else binop(A,y)
const GrB_Matrix A, // input matrix
// for sparse or hypersparse case:
int64_t *restrict *Workspaces, // Workspaces, size nworkspaces
const int64_t *restrict A_slice, // how A is sliced, size nthreads+1
int nworkspaces, // # of workspaces to use
// for all cases:
int nthreads // # of threads to use
)
{
//--------------------------------------------------------------------------
// check inputs
//--------------------------------------------------------------------------
ASSERT (!GB_ZOMBIES (A)) ;
ASSERT (GB_JUMBLED_OK (A)) ;
ASSERT (!GB_PENDING (A)) ;
GrB_Info info ;
GrB_Type Atype = A->type ;
ASSERT (op != NULL) ;
GB_Opcode opcode = op->opcode ;
// positional operators and user idxunop are applied after the transpose
ASSERT (!GB_OPCODE_IS_POSITIONAL (opcode)) ;
ASSERT (!GB_IS_INDEXUNARYOP_CODE (opcode)) ;
//--------------------------------------------------------------------------
// transpose the matrix and apply the operator
//--------------------------------------------------------------------------
if (C->iso)
{
//----------------------------------------------------------------------
// apply the operator to the iso value and transpose the pattern
//----------------------------------------------------------------------
// if C is iso, only the pattern is transposed. The numerical work
// takes O(1) time
// Cx [0] = unop (A), binop (scalar,A), or binop (A,scalar)
GB_iso_unop ((GB_void *) C->x, C->type, C_code_iso, op, A, scalar) ;
// C = transpose the pattern
#define GB_ISO_TRANSPOSE
#include "GB_unop_transpose.c"
}
else if (GB_IS_UNARYOP_CODE (opcode))
{
//----------------------------------------------------------------------
// apply the unary operator to all entries
//----------------------------------------------------------------------
ASSERT_UNARYOP_OK (op, "op for transpose", GB0) ;
//----------------------------------------------------------------------
// transpose the matrix; apply the unary op to all values if non-iso
//----------------------------------------------------------------------
#ifndef GBCUDA_DEV
if (Atype == op->xtype || opcode == GB_IDENTITY_unop_code)
{
// The switch factory is used if the unop is IDENTITY, or if no
// typecasting is being done. The IDENTITY operator can do
// arbitrary typecasting.
//------------------------------------------------------------------
// define the worker for the switch factory
//------------------------------------------------------------------
#define GB_unop_tran(opname,zname,aname) \
GB (_unop_tran_ ## opname ## zname ## aname)
#define GB_WORKER(opname,zname,ztype,aname,atype) \
{ \
info = GB_unop_tran (opname,zname,aname) \
(C, A, Workspaces, A_slice, nworkspaces, nthreads) ; \
if (info == GrB_SUCCESS) return ; \
} \
break ;
//------------------------------------------------------------------
// launch the switch factory
//------------------------------------------------------------------
#include "GB_unop_factory.c"
}
#endif
//----------------------------------------------------------------------
// generic worker: transpose, typecast, and apply unary operator
//----------------------------------------------------------------------
GB_BURBLE_MATRIX (A, "(generic transpose: %s) ", op->name) ;
size_t asize = Atype->size ;
size_t zsize = op->ztype->size ;
size_t xsize = op->xtype->size ;
GB_cast_function
cast_A_to_X = GB_cast_factory (op->xtype->code, Atype->code) ;
GxB_unary_function fop = op->unop_function ;
ASSERT_TYPE_OK (op->ztype, "unop ztype", GB0) ;
ASSERT_TYPE_OK (op->xtype, "unop xtype", GB0) ;
ASSERT_TYPE_OK (C->type, "C type", GB0) ;
ASSERT (C->type->size == zsize) ;
ASSERT (C->type == op->ztype) ;
// Cx [pC] = unop (cast (Ax [pA]))
#undef GB_CAST_OP
#define GB_CAST_OP(pC,pA) \
{ \
/* xwork = (xtype) Ax [pA] */ \
GB_void xwork [GB_VLA(xsize)] ; \
cast_A_to_X (xwork, Ax +((pA)*asize), asize) ; \
/* Cx [pC] = fop (xwork) ; Cx is of type op->ztype */ \
fop (Cx +((pC)*zsize), xwork) ; \
}
#define GB_ATYPE GB_void
#define GB_CTYPE GB_void
#include "GB_unop_transpose.c"
}
else
{
//----------------------------------------------------------------------
// apply a binary operator (bound to a scalar)
//----------------------------------------------------------------------
ASSERT_BINARYOP_OK (op, "binop for transpose", GB0) ;
GB_Type_code xcode, ycode, zcode ;
ASSERT (opcode != GB_FIRST_binop_code) ;
ASSERT (opcode != GB_SECOND_binop_code) ;
ASSERT (opcode != GB_PAIR_binop_code) ;
ASSERT (opcode != GB_ANY_binop_code) ;
size_t asize = Atype->size ;
size_t ssize = scalar->type->size ;
size_t zsize = op->ztype->size ;
size_t xsize = op->xtype->size ;
size_t ysize = op->ytype->size ;
GB_Type_code scode = scalar->type->code ;
xcode = op->xtype->code ;
ycode = op->ytype->code ;
// typecast the scalar to the operator input
size_t ssize_cast ;
GB_Type_code scode_cast ;
if (binop_bind1st)
{
ssize_cast = xsize ;
scode_cast = xcode ;
}
else
{
ssize_cast = ysize ;
scode_cast = ycode ;
}
GB_void swork [GB_VLA(ssize_cast)] ;
GB_void *scalarx = (GB_void *) scalar->x ;
if (scode_cast != scode)
{
// typecast the scalar to the operator input, in swork
GB_cast_function cast_s = GB_cast_factory (scode_cast, scode) ;
cast_s (swork, scalar->x, ssize) ;
scalarx = swork ;
}
GB_Type_code acode = Atype->code ;
GxB_binary_function fop = op->binop_function ;
GB_cast_function cast_A_to_Y = GB_cast_factory (ycode, acode) ;
GB_cast_function cast_A_to_X = GB_cast_factory (xcode, acode) ;
//----------------------------------------------------------------------
// transpose the matrix; apply the binary op to all values if non-iso
//----------------------------------------------------------------------
#ifndef GBCUDA_DEV
if (binop_bind1st)
{
//------------------------------------------------------------------
// C = op(scalar,A')
//------------------------------------------------------------------
if (GB_binop_builtin (op->xtype, false, Atype, false,
(GrB_BinaryOp) op, false, &opcode, &xcode, &ycode, &zcode))
{
//--------------------------------------------------------------
// define the worker for the switch factory
//--------------------------------------------------------------
#define GB_bind1st_tran(op,xname) \
GB (_bind1st_tran_ ## op ## xname)
#define GB_BINOP_WORKER(op,xname) \
{ \
if (GB_bind1st_tran (op, xname) (C, scalarx, A, \
Workspaces, A_slice, nworkspaces, nthreads) \
== GrB_SUCCESS) return ; \
} \
break ;
//--------------------------------------------------------------
// launch the switch factory
//--------------------------------------------------------------
#define GB_NO_FIRST
#define GB_NO_SECOND
#define GB_NO_PAIR
#include "GB_binop_factory.c"
}
}
else
{
//------------------------------------------------------------------
// C = op(A',scalar)
//------------------------------------------------------------------
if (GB_binop_builtin (Atype, false, op->ytype, false,
(GrB_BinaryOp) op, false, &opcode, &xcode, &ycode, &zcode))
{
//--------------------------------------------------------------
// define the worker for the switch factory
//--------------------------------------------------------------
#define GB_bind2nd_tran(op,xname) \
GB (_bind2nd_tran_ ## op ## xname)
#undef GB_BINOP_WORKER
#define GB_BINOP_WORKER(op,xname) \
{ \
if (GB_bind2nd_tran (op, xname) (C, A, scalarx, \
Workspaces, A_slice, nworkspaces, nthreads) \
== GrB_SUCCESS) return ; \
} \
break ;
//--------------------------------------------------------------
// launch the switch factory
//--------------------------------------------------------------
#define GB_NO_FIRST
#define GB_NO_SECOND
#define GB_NO_PAIR
#include "GB_binop_factory.c"
}
}
#endif
//----------------------------------------------------------------------
// generic worker: transpose, typecast and apply a binary operator
//----------------------------------------------------------------------
GB_BURBLE_MATRIX (A, "(generic transpose: %s) ", op->name) ;
#define GB_CAST_OP_BIND_1ST(pC,pA) \
{ \
/* ywork = (ytype) Ax [pA] */ \
GB_void ywork [GB_VLA(ysize)] ; \
cast_A_to_Y (ywork, Ax +(pA)*asize, asize) ; \
/* Cx [pC] = fop (xwork) ; Cx is of type op->ztype */ \
fop (Cx +((pC)*zsize), scalarx, ywork) ; \
}
#define GB_CAST_OP_BIND_2ND(pC,pA) \
{ \
/* xwork = (xtype) Ax [pA] */ \
GB_void xwork [GB_VLA(xsize)] ; \
cast_A_to_X (xwork, Ax +(pA)*asize, asize) ; \
/* Cx [pC] = fop (xwork) ; Cx is of type op->ztype */ \
fop (Cx +(pC*zsize), xwork, scalarx) ; \
}
if (binop_bind1st)
{
// Cx [pC] = op (cast (scalar), cast (Ax [pA]))
#undef GB_CAST_OP
#define GB_CAST_OP(pC,pA) GB_CAST_OP_BIND_1ST(pC,pA)
#include "GB_unop_transpose.c"
}
else
{
// Cx [pC] = op (cast (Ax [pA]), cast (scalar))
#undef GB_CAST_OP
#define GB_CAST_OP(pC,pA) GB_CAST_OP_BIND_2ND(pC,pA)
#include "GB_unop_transpose.c"
}
}
}
|