1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
|
//------------------------------------------------------------------------------
// GB_wait: finish all pending computations on a single matrix
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// CALLS: GB_builder
// The matrix A has zombies and/or pending tuples placed there by
// GrB_setElement, GrB_*assign, or GB_mxm. Zombies must now be deleted, and
// pending tuples must now be assembled together and added into the matrix.
// The indices in A might also be jumbled; if so, they are sorted now.
// When the function returns, and all pending tuples and zombies have been
// deleted. This is true even the function fails due to lack of memory (in
// that case, the matrix is cleared as well).
// If A is hypersparse, the time taken is at most O(nnz(A) + t log t), where t
// is the number of pending tuples in A, and nnz(A) includes both zombies and
// live entries. There is no O(m) or O(n) time component, if A is m-by-n.
// If the number of non-empty vectors of A grows too large, then A can be
// converted to non-hypersparse.
// If A is non-hypersparse, then O(n) is added in the worst case, to prune
// zombies and to update the vector pointers for A.
// If A->nvec_nonempty is unknown (-1) it is computed.
// The A->Y hyper_hash is freed if the A->h hyperlist has to be constructed.
// Instead, it is not computed and left pending (as NULL). It is not modified
// if A->h doesn't change.
// If the method is successful, it does an OpenMP flush just before returning.
#define GB_FREE_WORKSPACE \
{ \
GB_Matrix_free (&Y) ; \
GB_Matrix_free (&T) ; \
GB_Matrix_free (&S) ; \
GB_Matrix_free (&A1) ; \
}
#define GB_FREE_ALL \
{ \
GB_FREE_WORKSPACE ; \
GB_phybix_free (A) ; \
}
#include "GB_select.h"
#include "GB_add.h"
#include "GB_Pending.h"
#include "GB_build.h"
#include "GB_jappend.h"
#include "GB_atomics.h"
GB_PUBLIC
GrB_Info GB_wait // finish all pending computations
(
GrB_Matrix A, // matrix with pending computations
const char *name, // name of the matrix
GB_Context Context
)
{
//--------------------------------------------------------------------------
// check inputs
//--------------------------------------------------------------------------
GrB_Info info = GrB_SUCCESS ;
struct GB_Matrix_opaque T_header, A1_header, S_header ;
GrB_Matrix T = NULL, A1 = NULL, S = NULL, Y = NULL ;
ASSERT_MATRIX_OK (A, "A to wait", GB_FLIP (GB0)) ;
if (GB_IS_FULL (A) || GB_IS_BITMAP (A))
{
// full and bitmap matrices never have any pending work
ASSERT (!GB_ZOMBIES (A)) ;
ASSERT (!GB_JUMBLED (A)) ;
ASSERT (!GB_PENDING (A)) ;
ASSERT (A->nvec_nonempty >= 0) ;
// ensure the matrix is written to memory
#pragma omp flush
return (GrB_SUCCESS) ;
}
// only sparse and hypersparse matrices can have pending work
ASSERT (GB_IS_SPARSE (A) || GB_IS_HYPERSPARSE (A)) ;
ASSERT (GB_ZOMBIES_OK (A)) ;
ASSERT (GB_JUMBLED_OK (A)) ;
ASSERT (GB_PENDING_OK (A)) ;
//--------------------------------------------------------------------------
// get the zombie and pending count, and burble if work needs to be done
//--------------------------------------------------------------------------
int64_t nzombies = A->nzombies ;
int64_t npending = GB_Pending_n (A) ;
const bool A_iso = A->iso ;
if (nzombies > 0 || npending > 0 || A->jumbled || A->nvec_nonempty < 0)
{
GB_BURBLE_MATRIX (A, "(%swait:%s " GBd " %s, " GBd " pending%s%s) ",
A_iso ? "iso " : "", name, nzombies,
(nzombies == 1) ? "zombie" : "zombies", npending,
A->jumbled ? ", jumbled" : "",
A->nvec_nonempty < 0 ? ", nvec" : "") ;
}
//--------------------------------------------------------------------------
// determine the max # of threads to use
//--------------------------------------------------------------------------
GB_GET_NTHREADS_MAX (nthreads_max, chunk, Context) ;
//--------------------------------------------------------------------------
// check if only A->nvec_nonempty is needed
//--------------------------------------------------------------------------
if (npending == 0 && nzombies == 0 && !A->jumbled)
{
// A->Y is not modified. If not NULL, it remains valid
if (A->nvec_nonempty < 0)
{
A->nvec_nonempty = GB_nvec_nonempty (A, Context) ;
}
return (GrB_SUCCESS) ;
}
//--------------------------------------------------------------------------
// check if A only needs to be unjumbled
//--------------------------------------------------------------------------
if (npending == 0 && nzombies == 0)
{
// A is not conformed, so the sparsity structure of A is not modified.
// That is, if A has no pending tuples and no zombies, but is just
// jumbled, then it stays sparse or hypersparse. A->Y is not modified
// nor accessed, and remains NULL if it is NULL on input. If it is
// present, it remains valid.
GB_OK (GB_unjumble (A, Context)) ;
ASSERT (GB_IMPLIES (info == GrB_SUCCESS, A->nvec_nonempty >= 0)) ;
return (info) ;
}
//--------------------------------------------------------------------------
// assemble the pending tuples into T
//--------------------------------------------------------------------------
int64_t anz_orig = GB_nnz (A) ;
int64_t asize = A->type->size ;
int64_t tnz = 0 ;
if (npending > 0)
{
//----------------------------------------------------------------------
// construct a new hypersparse matrix T with just the pending tuples
//----------------------------------------------------------------------
// T has the same type as A->type, which can differ from the type of
// the pending tuples, A->Pending->type. The Pending->op can be NULL
// (an implicit SECOND function), or it can be any accum operator. The
// z=accum(x,y) operator can have any types, and it does not have to be
// associative. T is constructed as iso if A is iso.
GB_void *S_input = (A_iso) ? ((GB_void *) A->x) : NULL ;
GrB_Type stype = (A_iso) ? A->type : A->Pending->type ;
GB_CLEAR_STATIC_HEADER (T, &T_header) ;
info = GB_builder (
T, // create T using a static header
A->type, // T->type = A->type
A->vlen, // T->vlen = A->vlen
A->vdim, // T->vdim = A->vdim
A->is_csc, // T->is_csc = A->is_csc
&(A->Pending->i), // iwork_handle, becomes T->i on output
&(A->Pending->i_size),
&(A->Pending->j), // jwork_handle, free on output
&(A->Pending->j_size),
&(A->Pending->x), // Swork_handle, free on output
&(A->Pending->x_size),
A->Pending->sorted, // tuples may or may not be sorted
false, // there might be duplicates; look for them
A->Pending->nmax, // size of Pending->[ijx] arrays
true, // is_matrix: unused
NULL, NULL, S_input, // original I,J,S_input tuples
A_iso, // pending tuples are iso if A is iso
npending, // # of tuples
A->Pending->op, // dup operator for assembling duplicates,
// NULL if A is iso
stype, // type of Pending->x
true, // burble is allowed
Context
) ;
//----------------------------------------------------------------------
// free pending tuples
//----------------------------------------------------------------------
// The tuples have been converted to T, which is more compact, and
// duplicates have been removed. The following work needs to be done
// even if the builder fails.
// GB_builder frees A->Pending->j and A->Pending->x. If successful,
// A->Pending->i is now T->i. Otherwise A->Pending->i is freed. In
// both cases, A->Pending->i is NULL.
ASSERT (A->Pending->i == NULL) ;
ASSERT (A->Pending->j == NULL) ;
ASSERT (A->Pending->x == NULL) ;
// free the list of pending tuples
GB_Pending_free (&(A->Pending)) ;
ASSERT (!GB_PENDING (A)) ;
ASSERT_MATRIX_OK (A, "A after moving pending tuples to T", GB0) ;
//----------------------------------------------------------------------
// check the status of the builder
//----------------------------------------------------------------------
// Finally check the status of the builder. The pending tuples, must
// be freed (just above), whether or not the builder is successful.
if (info != GrB_SUCCESS)
{
// out of memory in GB_builder
GB_FREE_ALL ;
return (info) ;
}
ASSERT_MATRIX_OK (T, "T = hypersparse matrix of pending tuples", GB0) ;
ASSERT (GB_IS_HYPERSPARSE (T)) ;
ASSERT (!GB_ZOMBIES (T)) ;
ASSERT (!GB_JUMBLED (T)) ;
ASSERT (!GB_PENDING (T)) ;
tnz = GB_nnz (T) ;
ASSERT (tnz > 0) ;
}
//--------------------------------------------------------------------------
// delete zombies
//--------------------------------------------------------------------------
// A zombie is an entry A(i,j) in the matrix that as been marked for
// deletion, but hasn't been deleted yet. It is marked by "negating"
// replacing its index i with GB_FLIP(i).
// TODO: pass tnz to GB_selector, to pad the reallocated A matrix
ASSERT_MATRIX_OK (A, "A before zombies removed", GB0) ;
if (nzombies > 0)
{
// remove all zombies from A
// GB_selector frees A->Y if it changes A->h, or leaves it
// unmodified (and valid) otherwise.
GB_OK (GB_selector (
NULL, // A in-place
GB_NONZOMBIE_selop_code, // use the opcode only
NULL, // no GB_Operator
false, // flipij is false
A, // input/output matrix
0, // ithunk is unused
NULL, // no GrB_Scalar Thunk
Context)) ;
ASSERT (A->nzombies == (anz_orig - GB_nnz (A))) ;
A->nzombies = 0 ;
}
ASSERT_MATRIX_OK (A, "A after zombies removed", GB0) ;
// all the zombies are gone, and pending tuples are now in T
ASSERT (!GB_ZOMBIES (A)) ;
ASSERT (GB_JUMBLED_OK (A)) ;
ASSERT (!GB_PENDING (A)) ;
//--------------------------------------------------------------------------
// unjumble the matrix
//--------------------------------------------------------------------------
GB_OK (GB_unjumble (A, Context)) ;
ASSERT (!GB_ZOMBIES (A)) ;
ASSERT (!GB_JUMBLED (A)) ;
ASSERT (!GB_PENDING (A)) ;
//--------------------------------------------------------------------------
// check for pending tuples
//--------------------------------------------------------------------------
if (npending == 0)
{
// conform A to its desired sparsity structure and return result
info = GB_conform (A, Context) ;
ASSERT (GB_IMPLIES (info == GrB_SUCCESS, A->nvec_nonempty >= 0)) ;
#pragma omp flush
return (info) ;
}
//--------------------------------------------------------------------------
// check for quick transplant
//--------------------------------------------------------------------------
int64_t anz = GB_nnz (A) ;
if (anz == 0)
{
// A has no entries so just transplant T into A, then free T and
// conform A to its desired hypersparsity.
info = GB_transplant_conform (A, A->type, &T, Context) ;
ASSERT (GB_IMPLIES (info == GrB_SUCCESS, A->nvec_nonempty >= 0)) ;
#pragma omp flush
return (info) ;
}
//--------------------------------------------------------------------------
// determine the method for A = A+T
//--------------------------------------------------------------------------
// If anz > 0, T is hypersparse, even if A is a GrB_Vector
ASSERT (GB_IS_HYPERSPARSE (T)) ;
ASSERT (tnz > 0) ;
ASSERT (T->nvec > 0) ;
ASSERT (A->nvec > 0) ;
// tjfirst = first vector in T
int64_t tjfirst = T->h [0] ;
int64_t anz0 = 0 ;
int64_t kA = 0 ;
int64_t jlast ;
int64_t *restrict Ap = A->p ;
int64_t *restrict Ah = A->h ;
int64_t *restrict Ai = A->i ;
GB_void *restrict Ax = (GB_void *) A->x ;
int64_t anvec = A->nvec ;
// anz0 = nnz (A0) = nnz (A (:, 0:tjfirst-1)), the region not modified by T
if (A->h != NULL)
{
// find tjfirst in A->h
int64_t pright = anvec - 1 ;
bool found ;
GB_SPLIT_BINARY_SEARCH (tjfirst, A->h, kA, pright, found) ;
// A->h [0 ... kA-1] excludes vector tjfirst. The list
// A->h [kA ... anvec-1] includes tjfirst.
ASSERT (kA >= 0 && kA <= anvec) ;
ASSERT (GB_IMPLIES (kA > 0 && kA < anvec, A->h [kA-1] < tjfirst)) ;
ASSERT (GB_IMPLIES (found, A->h [kA] == tjfirst)) ;
jlast = (kA > 0) ? A->h [kA-1] : (-1) ;
}
else
{
kA = tjfirst ;
jlast = tjfirst - 1 ;
}
// anz1 = nnz (A1) = nnz (A (:, kA:end)), the region modified by T
anz0 = A->p [kA] ;
int64_t anz1 = anz - anz0 ;
bool ignore ;
// A + T will have anz_new entries
int64_t anz_new = anz + tnz ; // must have at least this space
if (2 * anz1 < anz0)
{
//----------------------------------------------------------------------
// append new tuples to A
//----------------------------------------------------------------------
// A is growing incrementally. It splits into two parts: A = [A0 A1].
// where A0 = A (:, 0:kA-1) and A1 = A (:, kA:end). The
// first part (A0 with anz0 = nnz (A0) entries) is not modified. The
// second part (A1, with anz1 = nnz (A1) entries) overlaps with T.
// If anz1 is zero, or small compared to anz0, then it is faster to
// leave A0 unmodified, and to update just A1.
// TODO: if A also had zombies, GB_selector could pad A so that
// GB_nnz_max (A) is equal to anz + tnz.
// make sure A has enough space for the new tuples
if (anz_new > GB_nnz_max (A))
{
// double the size if not enough space
GB_OK (GB_ix_realloc (A, 2 * anz_new, Context)) ;
Ai = A->i ;
Ax = (GB_void *) A->x ;
}
//----------------------------------------------------------------------
// T = A1 + T
//----------------------------------------------------------------------
if (anz1 > 0)
{
//------------------------------------------------------------------
// extract A1 = A (:, kA:end) as a shallow copy
//------------------------------------------------------------------
// A1 = [0, A (:, kA:end)], hypersparse with same dimensions as A
GB_CLEAR_STATIC_HEADER (A1, &A1_header) ;
GB_OK (GB_new (&A1, // hyper, existing header
A->type, A->vlen, A->vdim, GB_Ap_malloc, A->is_csc,
GxB_HYPERSPARSE, GB_ALWAYS_HYPER, anvec - kA, Context)) ;
// the A1->i and A1->x content are shallow copies of A(:,kA:end).
// They are not allocated pointers, but point to space inside
// Ai and Ax.
A1->x = (void *) (Ax + (A_iso ? 0 : (asize * anz0))) ;
A1->x_size = (A_iso ? 1 : anz1) * asize ;
A1->x_shallow = true ;
A1->i = Ai + anz0 ;
A1->i_size = anz1 * sizeof (int64_t) ;
A1->i_shallow = true ;
A1->iso = A_iso ; // OK
// fill the column A1->h and A1->p with A->h and A->p, shifted
int64_t *restrict A1p = A1->p ;
int64_t *restrict A1h = A1->h ;
int64_t a1nvec = 0 ;
for (int64_t k = kA ; k < anvec ; k++)
{
// get A (:,k)
int64_t pA_start = Ap [k] ;
int64_t pA_end = Ap [k+1] ;
if (pA_end > pA_start)
{
// add this column to A1 if A (:,k) is not empty
int64_t j = GBH (Ah, k) ;
A1p [a1nvec] = pA_start - anz0 ;
A1h [a1nvec] = j ;
a1nvec++ ;
}
}
// finalize A1
A1p [a1nvec] = anz1 ;
A1->nvec = a1nvec ;
A1->nvec_nonempty = a1nvec ;
A1->nvals = anz1 ;
A1->magic = GB_MAGIC ;
ASSERT_MATRIX_OK (A1, "A1 slice for GB_wait", GB0) ;
//------------------------------------------------------------------
// S = A1 + T, with no operator or mask
//------------------------------------------------------------------
GB_CLEAR_STATIC_HEADER (S, &S_header) ;
GB_OK (GB_add (S, A->type, A->is_csc, NULL, 0, 0, &ignore, A1, T,
false, NULL, NULL, NULL, Context)) ;
ASSERT_MATRIX_OK (S, "S = A1+T", GB0) ;
// free A1 and T
GB_Matrix_free (&T) ;
GB_Matrix_free (&A1) ;
//------------------------------------------------------------------
// replace T with S
//------------------------------------------------------------------
T = S ;
S = NULL ;
tnz = GB_nnz (T) ;
//------------------------------------------------------------------
// remove A1 from the vectors of A, if A is hypersparse
//------------------------------------------------------------------
if (A->h != NULL)
{
A->nvec = kA ;
}
}
//----------------------------------------------------------------------
// append T to the end of A0
//----------------------------------------------------------------------
const int64_t *restrict Tp = T->p ;
const int64_t *restrict Th = T->h ;
const int64_t *restrict Ti = T->i ;
int64_t tnvec = T->nvec ;
anz = anz0 ;
int64_t anz_last = anz ;
int nthreads = GB_nthreads (tnz, chunk, nthreads_max) ;
// append the indices and values of T to the end of A
GB_memcpy (Ai + anz, Ti, tnz * sizeof (int64_t), nthreads) ;
if (!A_iso)
{
const GB_void *restrict Tx = (GB_void *) T->x ;
GB_memcpy (Ax + anz * asize, Tx, tnz * asize, nthreads) ;
}
// append the vectors of T to the end of A
for (int64_t k = 0 ; k < tnvec ; k++)
{
int64_t j = Th [k] ;
ASSERT (j >= tjfirst) ;
anz += (Tp [k+1] - Tp [k]) ;
GB_OK (GB_jappend (A, j, &jlast, anz, &anz_last, Context)) ;
}
GB_jwrapup (A, jlast, anz) ;
ASSERT (anz == anz_new) ;
// need to recompute the # of non-empty vectors in GB_conform
A->nvec_nonempty = -1 ; // recomputed just below
// A->h has been modified so A->Y is now invalid
GB_hyper_hash_free (A) ;
ASSERT_MATRIX_OK (A, "A after GB_wait:append", GB0) ;
GB_Matrix_free (&T) ;
// conform A to its desired sparsity structure
GB_OK (GB_conform (A, Context)) ;
ASSERT (A->nvec_nonempty >= 0) ;
}
else
{
//----------------------------------------------------------------------
// A = A+T
//----------------------------------------------------------------------
// The update is not incremental since most of A is changing. Just do
// a single parallel add: S=A+T, free T, and then transplant S back
// into A. The nzmax of A is tight, with no room for future
// incremental growth.
// FUTURE:: if GB_add could tolerate zombies in A, then the initial
// prune of zombies can be skipped.
// T->Y is not present (GB_builder does not create it). The old A->Y
// is still valid, if present, for the matrix A prior to added the
// pending tuples in T. GB_add may need A->Y to compute S, but it does
// not compute S->Y.
GB_CLEAR_STATIC_HEADER (S, &S_header) ;
GB_OK (GB_add (S, A->type, A->is_csc, NULL, 0, 0, &ignore, A, T,
false, NULL, NULL, NULL, Context)) ;
GB_Matrix_free (&T) ;
ASSERT_MATRIX_OK (S, "S after GB_wait:add", GB0) ;
if (GB_IS_HYPERSPARSE (A) && GB_IS_HYPERSPARSE (S) && A->Y != NULL
&& !A->Y_shallow && !GB_is_shallow (A->Y))
{
// A and S are both hypersparse, and the old A->Y exists and is not
// shallow. Check if S->h and A->h are identical. If so, remove
// A->Y from A and save it. Then after the transplant of S into A,
// below, if A is still hyperparse, transplant Y back into A->Y.
if (S->nvec == anvec)
{
// A and S have the same number of vectors. Compare Ah and Sh
int64_t *restrict Ah = A->h ;
int64_t *restrict Sh = S->h ;
bool hsame = true ;
int nthreads = GB_nthreads (anvec, chunk, nthreads_max) ;
if (nthreads == 1)
{
// compare Ah and Sh with a single thread
hsame = (memcmp (Ah, Sh, anvec * sizeof (int64_t)) == 0) ;
}
else
{
// compare Ah and Sh with several threads
int ntasks = 64 * nthreads ;
int tid ;
#pragma omp parallel for num_threads(nthreads) \
schedule(dynamic)
for (tid = 0 ; tid < ntasks ; tid++)
{
int64_t kstart, kend ;
GB_PARTITION (kstart, kend, anvec, tid, ntasks) ;
bool my_hsame ;
GB_ATOMIC_READ
my_hsame = hsame ;
if (my_hsame)
{
// compare my region of Ah and Sh
my_hsame = (memcmp (Ah + kstart, Sh + kstart,
(kend - kstart) * sizeof (int64_t)) == 0) ;
if (!my_hsame)
{
// tell other tasks to exit early
GB_ATOMIC_WRITE
hsame = false ;
}
}
}
}
if (hsame)
{
// Ah and Sh are the same, so keep A->Y
Y = A->Y ;
A->Y = NULL ;
A->Y_shallow = false ;
}
}
}
// transplant S into A
GB_OK (GB_transplant_conform (A, A->type, &S, Context)) ;
ASSERT (A->nvec_nonempty >= 0) ;
if (Y != NULL && GB_IS_HYPERSPARSE (A) && A->Y == NULL)
{
// The hyperlist of A has not changed. A is still hypersparse, and
// has no A->Y after the transplant/conform above. The original
// A->Y is valid, so transplant it back into A.
A->Y = Y ;
A->Y_shallow = false ;
Y = NULL ;
}
ASSERT_MATRIX_OK (A, "A after GB_wait:add", GB0) ;
}
//--------------------------------------------------------------------------
// flush the matrix and return result
//--------------------------------------------------------------------------
GB_FREE_WORKSPACE ;
#pragma omp flush
return (info) ;
}
|