1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
|
//------------------------------------------------------------------------------
// GrB_Matrix_removeElement: remove a single entry from a matrix
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// Removes a single entry, C (row,col), from the matrix C.
#define GB_DEBUG
#include "GB.h"
#define GB_FREE_ALL ;
//------------------------------------------------------------------------------
// GB_removeElement: remove C(i,j) if it exists
//------------------------------------------------------------------------------
static inline bool GB_removeElement // return true if found
(
GrB_Matrix C,
GrB_Index i,
GrB_Index j
)
{
//--------------------------------------------------------------------------
// check inputs
//--------------------------------------------------------------------------
ASSERT (!GB_IS_FULL (C)) ;
int64_t cvlen = C->vlen ;
//--------------------------------------------------------------------------
// remove C(i,j)
//--------------------------------------------------------------------------
if (GB_IS_BITMAP (C))
{
//----------------------------------------------------------------------
// C is bitmap
//----------------------------------------------------------------------
int8_t *restrict Cb = C->b ;
int64_t p = i + j * cvlen ;
int8_t cb = Cb [p] ;
if (cb != 0)
{
// C(i,j) is present; remove it
Cb [p] = 0 ;
C->nvals-- ;
}
// C(i,j) is always found, whether present or not
return (true) ;
}
else
{
//----------------------------------------------------------------------
// C is sparse or hypersparse
//----------------------------------------------------------------------
const int64_t *restrict Cp = C->p ;
const int64_t *restrict Ci = C->i ;
const int64_t *restrict Ch = C->h ;
bool found ;
int64_t pC_start, pC_end ;
if (Ch != NULL)
{
//------------------------------------------------------------------
// C is hypersparse: look for j in hyperlist C->h [0 ... C->nvec-1]
//------------------------------------------------------------------
int64_t k ;
if (C->Y == NULL)
{
// C is sparse but does not yet have a hyper_hash
k = 0 ;
found = GB_lookup (true, Ch, Cp, C->vlen, &k,
C->nvec-1, j, &pC_start, &pC_end) ;
}
else
{
// C is sparse, with a hyper_hash that is already built
k = GB_hyper_hash_lookup (Cp, C->Y->p, C->Y->i, C->Y->x,
C->Y->vdim-1, j, &pC_start, &pC_end) ;
found = (k >= 0) ;
}
if (!found)
{
// vector j is empty
return (false) ;
}
ASSERT (j == Ch [k]) ;
}
else
{
//------------------------------------------------------------------
// C is sparse, C(:,j) is the jth vector of C
//------------------------------------------------------------------
pC_start = Cp [j] ;
pC_end = Cp [j+1] ;
}
// look in C(:,k), the kth vector of C
int64_t pleft = pC_start ;
int64_t pright = pC_end-1 ;
int64_t cknz = pC_end - pC_start ;
bool is_zombie ;
if (cknz == cvlen)
{
// C(:,k) is as-if-full so no binary search needed to find C(i,k)
pleft = pleft + i ;
ASSERT (GB_UNFLIP (Ci [pleft]) == i) ;
found = true ;
is_zombie = GB_IS_ZOMBIE (Ci [pleft]) ;
}
else
{
// binary search for C(i,k): time is O(log(cknz))
int64_t nzombies = C->nzombies ;
GB_BINARY_SEARCH_ZOMBIE (i, Ci, pleft, pright, found,
nzombies, is_zombie) ;
}
// remove the entry
if (found && !is_zombie)
{
// C(i,j) becomes a zombie
C->i [pleft] = GB_FLIP (i) ;
C->nzombies++ ;
}
return (found) ;
}
}
//------------------------------------------------------------------------------
// GB_Matrix_removeElement: remove a single entry from a matrix
//------------------------------------------------------------------------------
GrB_Info GB_Matrix_removeElement
(
GrB_Matrix C, // matrix to remove entry from
GrB_Index row, // row index
GrB_Index col, // column index
GB_Context Context
)
{
//--------------------------------------------------------------------------
// if C is jumbled, wait on the matrix first. If full, convert to nonfull
//--------------------------------------------------------------------------
if (C->jumbled || GB_IS_FULL (C))
{
GrB_Info info ;
if (GB_IS_FULL (C))
{
// convert C from full to sparse
GB_OK (GB_convert_to_nonfull (C, Context)) ;
}
else
{
// C is sparse or hypersparse, and jumbled
GB_OK (GB_wait (C, "C (removeElement:jumbled)", Context)) ;
}
ASSERT (!GB_IS_FULL (C)) ;
ASSERT (!GB_ZOMBIES (C)) ;
ASSERT (!GB_JUMBLED (C)) ;
ASSERT (!GB_PENDING (C)) ;
// remove the entry
return (GB_Matrix_removeElement (C, row, col, Context)) ;
}
//--------------------------------------------------------------------------
// C is not jumbled and not full; it may have zombies and pending tuples
//--------------------------------------------------------------------------
ASSERT (!GB_IS_FULL (C)) ;
ASSERT (GB_ZOMBIES_OK (C)) ;
ASSERT (!GB_JUMBLED (C)) ;
ASSERT (GB_PENDING_OK (C)) ;
// look for index i in vector j
int64_t i, j, nrows, ncols ;
if (C->is_csc)
{
// C is stored by column
i = row ;
j = col ;
nrows = C->vlen ;
ncols = C->vdim ;
}
else
{
// C is stored by row
i = col ;
j = row ;
nrows = C->vdim ;
ncols = C->vlen ;
}
// check row and column indices
if (row >= nrows)
{
GB_ERROR (GrB_INVALID_INDEX, "Row index "
GBu " out of range; must be < " GBd, row, nrows) ;
}
if (col >= ncols)
{
GB_ERROR (GrB_INVALID_INDEX, "Column index "
GBu " out of range; must be < " GBd, col, ncols) ;
}
// if C is sparse or hyper, it may have pending tuples
bool C_is_pending = GB_PENDING (C) ;
if (GB_nnz (C) == 0 && !C_is_pending)
{
// quick return
return (GrB_SUCCESS) ;
}
// remove the entry
if (GB_removeElement (C, i, j))
{
// found it; no need to assemble pending tuples
return (GrB_SUCCESS) ;
}
// assemble any pending tuples; zombies are OK
if (C_is_pending)
{
GrB_Info info ;
GB_OK (GB_wait (C, "C (removeElement:pending tuples)", Context)) ;
ASSERT (!GB_ZOMBIES (C)) ;
ASSERT (!GB_JUMBLED (C)) ;
ASSERT (!GB_PENDING (C)) ;
// look again; remove the entry if it was a pending tuple
GB_removeElement (C, i, j) ;
}
return (GrB_SUCCESS) ;
}
//------------------------------------------------------------------------------
// GrB_Matrix_removeElement: remove a single entry from a matrix
//------------------------------------------------------------------------------
GrB_Info GrB_Matrix_removeElement
(
GrB_Matrix C, // matrix to remove entry from
GrB_Index row, // row index
GrB_Index col // column index
)
{
GB_WHERE (C, "GrB_Matrix_removeElement (C, row, col)") ;
GB_RETURN_IF_NULL_OR_FAULTY (C) ;
return (GB_Matrix_removeElement (C, row, col, Context)) ;
}
|