1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
|
//------------------------------------------------------------------------------
// GB_AxB_dot_generic: generic template for all dot-product methods
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// This template serves the dot2 and dot3 methods, but not dot4. The
// #including file defines GB_DOT2_GENERIC or GB_DOT3_GENERIC.
{
//--------------------------------------------------------------------------
// get operators, functions, workspace, contents of A, B, C
//--------------------------------------------------------------------------
ASSERT (!C->iso) ;
GxB_binary_function fmult = mult->binop_function ; // NULL if positional
GxB_binary_function fadd = add->op->binop_function ;
GB_Opcode opcode = mult->opcode ;
bool op_is_positional = GB_OPCODE_IS_POSITIONAL (opcode) ;
size_t csize = C->type->size ;
size_t asize = A_is_pattern ? 0 : A->type->size ;
size_t bsize = B_is_pattern ? 0 : B->type->size ;
size_t xsize = mult->xtype->size ;
size_t ysize = mult->ytype->size ;
// scalar workspace: because of typecasting, the x/y types need not
// be the same as the size of the A and B types.
// flipxy false: aki = (xtype) A(k,i) and bkj = (ytype) B(k,j)
// flipxy true: aki = (ytype) A(k,i) and bkj = (xtype) B(k,j)
size_t aki_size = flipxy ? ysize : xsize ;
size_t bkj_size = flipxy ? xsize : ysize ;
GB_void *restrict terminal = (GB_void *) add->terminal ;
GB_cast_function cast_A, cast_B ;
if (flipxy)
{
// A is typecasted to y, and B is typecasted to x
cast_A = A_is_pattern ? NULL :
GB_cast_factory (mult->ytype->code, A->type->code) ;
cast_B = B_is_pattern ? NULL :
GB_cast_factory (mult->xtype->code, B->type->code) ;
}
else
{
// A is typecasted to x, and B is typecasted to y
cast_A = A_is_pattern ? NULL :
GB_cast_factory (mult->xtype->code, A->type->code) ;
cast_B = B_is_pattern ? NULL :
GB_cast_factory (mult->ytype->code, B->type->code) ;
}
//--------------------------------------------------------------------------
// C = A'*B via dot products, function pointers, and typecasting
//--------------------------------------------------------------------------
#define GB_ATYPE GB_void
#define GB_BTYPE GB_void
#define GB_PHASE_2_OF_2
// no vectorization
#define GB_PRAGMA_SIMD_VECTORIZE ;
#define GB_PRAGMA_SIMD_DOT(cij) ;
// no special semirings or operators
#define GB_IS_PAIR_MULTIPLIER 0
#define GB_IS_ANY_PAIR_SEMIRING 0
#define GB_IS_IMIN_MONOID 0
#define GB_IS_IMAX_MONOID 0
#define GB_IS_FIRSTJ_MULTIPLIER 0
if (op_is_positional)
{
//----------------------------------------------------------------------
// generic semirings with positional multiply operators
//----------------------------------------------------------------------
ASSERT (!flipxy) ;
// aki = A(i,k), located in Ax [A_iso?0:(pA)], but value not used
#define GB_A_IS_PATTERN 1
#define GB_GETA(aki,Ax,pA,A_iso) ;
// bkj = B(k,j), located in Bx [B_iso?0:pB], but value not used
#define GB_B_IS_PATTERN 1
#define GB_GETB(bkj,Bx,pB,B_iso) ;
// define cij for each task
#define GB_CIJ_DECLARE(cij) GB_CTYPE cij
// address of Cx [p]
#define GB_CX(p) (&Cx [p])
// Cx [p] = cij
#define GB_PUTC(cij,p) Cx [p] = cij
// break if cij reaches the terminal value
#define GB_DOT_TERMINAL(cij) \
if (is_terminal && cij == cij_terminal) \
{ \
break ; \
}
// C(i,j) += (A')(i,k) * B(k,j)
#define GB_MULTADD(cij, aki, bkj, i, k, j) \
GB_CTYPE zwork ; \
GB_MULT (zwork, aki, bkj, i, k, j) ; \
fadd (&cij, &cij, &zwork)
int64_t offset = GB_positional_offset (opcode, NULL) ;
if (mult->ztype == GrB_INT64)
{
#define GB_CTYPE int64_t
int64_t cij_terminal = 0 ;
bool is_terminal = (terminal != NULL) ;
if (is_terminal)
{
memcpy (&cij_terminal, terminal, sizeof (int64_t)) ;
}
switch (opcode)
{
case GB_FIRSTI_binop_code : // first_i(A'(i,k),y) == i
case GB_FIRSTI1_binop_code : // first_i1(A'(i,k),y) == i+1
#undef GB_MULT
#define GB_MULT(t, aki, bkj, i, k, j) t = i + offset
#if defined ( GB_DOT2_GENERIC )
#include "GB_AxB_dot2_meta.c"
#elif defined ( GB_DOT3_GENERIC )
#include "GB_AxB_dot3_meta.c"
#endif
break ;
case GB_FIRSTJ_binop_code : // first_j(A'(i,k),y) == k
case GB_FIRSTJ1_binop_code : // first_j1(A'(i,k),y) == k+1
case GB_SECONDI_binop_code : // second_i(x,B(k,j)) == k
case GB_SECONDI1_binop_code : // second_i1(x,B(k,j)) == k+1
#undef GB_MULT
#define GB_MULT(t, aki, bkj, i, k, j) t = k + offset
#if defined ( GB_DOT2_GENERIC )
#include "GB_AxB_dot2_meta.c"
#elif defined ( GB_DOT3_GENERIC )
#include "GB_AxB_dot3_meta.c"
#endif
break ;
case GB_SECONDJ_binop_code : // second_j(x,B(k,j)) == j
case GB_SECONDJ1_binop_code : // second_j1(x,B(k,j)) == j+1
#undef GB_MULT
#define GB_MULT(t, aki, bkj, i, k, j) t = j + offset
#if defined ( GB_DOT2_GENERIC )
#include "GB_AxB_dot2_meta.c"
#elif defined ( GB_DOT3_GENERIC )
#include "GB_AxB_dot3_meta.c"
#endif
break ;
default: ;
}
}
else
{
#undef GB_CTYPE
#define GB_CTYPE int32_t
int32_t cij_terminal = 0 ;
bool is_terminal = (terminal != NULL) ;
if (is_terminal)
{
memcpy (&cij_terminal, terminal, sizeof (int32_t)) ;
}
switch (opcode)
{
case GB_FIRSTI_binop_code : // first_i(A'(i,k),y) == i
case GB_FIRSTI1_binop_code : // first_i1(A'(i,k),y) == i+1
#undef GB_MULT
#define GB_MULT(t,aki,bkj,i,k,j) t = (int32_t) (i + offset)
#if defined ( GB_DOT2_GENERIC )
#include "GB_AxB_dot2_meta.c"
#elif defined ( GB_DOT3_GENERIC )
#include "GB_AxB_dot3_meta.c"
#endif
break ;
case GB_FIRSTJ_binop_code : // first_j(A'(i,k),y) == k
case GB_FIRSTJ1_binop_code : // first_j1(A'(i,k),y) == k+1
case GB_SECONDI_binop_code : // second_i(x,B(k,j)) == k
case GB_SECONDI1_binop_code : // second_i1(x,B(k,j)) == k+1
#undef GB_MULT
#define GB_MULT(t,aki,bkj,i,k,j) t = (int32_t) (k + offset)
#if defined ( GB_DOT2_GENERIC )
#include "GB_AxB_dot2_meta.c"
#elif defined ( GB_DOT3_GENERIC )
#include "GB_AxB_dot3_meta.c"
#endif
break ;
case GB_SECONDJ_binop_code : // second_j(x,B(k,j)) == j
case GB_SECONDJ1_binop_code : // second_j1(x,B(k,j)) == j+1
#undef GB_MULT
#define GB_MULT(t,aki,bkj,i,k,j) t = (int32_t) (j + offset)
#if defined ( GB_DOT2_GENERIC )
#include "GB_AxB_dot2_meta.c"
#elif defined ( GB_DOT3_GENERIC )
#include "GB_AxB_dot3_meta.c"
#endif
break ;
default: ;
}
}
}
else
{
//----------------------------------------------------------------------
// generic semirings with standard multiply operators
//----------------------------------------------------------------------
// aki = A(i,k), located in Ax [A_iso?0:(pA)]
#undef GB_A_IS_PATTERN
#define GB_A_IS_PATTERN 0
#undef GB_GETA
#define GB_GETA(aki,Ax,pA,A_iso) \
GB_void aki [GB_VLA(aki_size)] ; \
if (!A_is_pattern) cast_A (aki, Ax +((A_iso) ? 0:(pA)*asize), asize)
// bkj = B(k,j), located in Bx [B_iso?0:pB]
#undef GB_B_IS_PATTERN
#define GB_B_IS_PATTERN 0
#undef GB_GETB
#define GB_GETB(bkj,Bx,pB,B_iso) \
GB_void bkj [GB_VLA(bkj_size)] ; \
if (!B_is_pattern) cast_B (bkj, Bx +((B_iso) ? 0:(pB)*bsize), bsize)
// define cij for each task
#undef GB_CIJ_DECLARE
#define GB_CIJ_DECLARE(cij) GB_void cij [GB_VLA(csize)]
// address of Cx [p]
#undef GB_CX
#define GB_CX(p) Cx +((p)*csize)
// Cx [p] = cij
#undef GB_PUTC
#define GB_PUTC(cij,p) memcpy (GB_CX (p), cij, csize)
// break if cij reaches the terminal value
#undef GB_DOT_TERMINAL
#define GB_DOT_TERMINAL(cij) \
if (terminal != NULL && memcmp (cij, terminal, csize) == 0) \
{ \
break ; \
}
// C(i,j) += (A')(i,k) * B(k,j)
#undef GB_MULTADD
#define GB_MULTADD(cij, aki, bkj, i, k, j) \
GB_void zwork [GB_VLA(csize)] ; \
GB_MULT (zwork, aki, bkj, i, k, j) ; \
fadd (cij, cij, zwork)
#undef GB_CTYPE
#define GB_CTYPE GB_void
if (opcode == GB_FIRST_binop_code)
{
// t = A(i,k)
// fmult is not used and can be NULL (for user-defined types)
ASSERT (!flipxy) ;
ASSERT (B_is_pattern) ;
#undef GB_MULT
#define GB_MULT(t, aik, bkj, i, k, j) memcpy (t, aik, csize)
#if defined ( GB_DOT2_GENERIC )
#include "GB_AxB_dot2_meta.c"
#elif defined ( GB_DOT3_GENERIC )
#include "GB_AxB_dot3_meta.c"
#endif
}
else if (opcode == GB_SECOND_binop_code)
{
// t = B(i,k)
// fmult is not used and can be NULL (for user-defined types)
ASSERT (!flipxy) ;
ASSERT (A_is_pattern) ;
#undef GB_MULT
#define GB_MULT(t, aik, bkj, i, k, j) memcpy (t, bkj, csize)
#if defined ( GB_DOT2_GENERIC )
#include "GB_AxB_dot2_meta.c"
#elif defined ( GB_DOT3_GENERIC )
#include "GB_AxB_dot3_meta.c"
#endif
}
else if (flipxy)
{
// t = B(k,j) * (A')(i,k)
#undef GB_MULT
#define GB_MULT(t, aki, bkj, i, k, j) fmult (t, bkj, aki)
#if defined ( GB_DOT2_GENERIC )
#include "GB_AxB_dot2_meta.c"
#elif defined ( GB_DOT3_GENERIC )
#include "GB_AxB_dot3_meta.c"
#endif
}
else
{
// t = (A')(i,k) * B(k,j)
#undef GB_MULT
#define GB_MULT(t, aki, bkj, i, k, j) fmult (t, aki, bkj)
#if defined ( GB_DOT2_GENERIC )
#include "GB_AxB_dot2_meta.c"
#elif defined ( GB_DOT3_GENERIC )
#include "GB_AxB_dot3_meta.c"
#endif
}
}
}
|