1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
|
//------------------------------------------------------------------------------
// GB_AxB_factory: switch factory for C=A*B
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// This is used by GB_AxB_saxpy3.c and GB_AxB_dot[234].c to create the built-in
// versions of sparse matrix-matrix multiplication. The #include'ing file
// defines the GB_AxB_WORKER macro, and mult_binop_code, add_binop_code, xcode,
// ycode, and zcode.
// Three 2nd level switch factories are used:
// GB_AxB_type_factory: handles all semirings where the multiply operator
// is TxT->T (as is the monoid).
// GB_AxB_compare_factory: handles all semirings where the multiply
// operator is TxT -> bool (for the comparators, LT, GT,
// etc), and where the monoid is bool x bool -> bool.
// GB_AxB_bitwise_factory: handles all semirings for bitwise operators.
// GxB_AxB_positional_factory: handles all semirings for positional
// multiply operators. Those operators are of the for XxX -> int64,
// where "X" denotes any type. No typecasting is needed from the
// types of A and B.
// If the multiplicative operator is ANY, then it has already been renamed to
// SECOND, prior to using this factory, since that is faster for the
// saxpy-based methods (y is the value of B(k,j), which is loaded less
// frequently from memory than A(i,k)).
// This switch factory is not used to call the ANY_PAIR iso semiring.
ASSERT (mult_binop_code != GB_ANY_binop_code) ;
{
//--------------------------------------------------------------------------
// launch the switch factory
//--------------------------------------------------------------------------
switch (mult_binop_code)
{
//----------------------------------------------------------------------
case GB_FIRST_binop_code : // z = x
//----------------------------------------------------------------------
// 61 semirings with FIRST:
// 50: (min,max,plus,times,any) for 10 non-boolean real
// 5: (or,and,xor,eq,any) for boolean
// 6: (plus,times,any) for 2 complex
#define GB_MNAME _first
#define GB_COMPLEX
#include "GB_AxB_type_factory.c"
break ;
//----------------------------------------------------------------------
case GB_SECOND_binop_code : // z = y
//----------------------------------------------------------------------
// 61 semirings with SECOND:
// 50: (min,max,plus,times,any) for 10 real non-boolean
// 5: (or,and,xor,eq,any) for boolean
// 6: (plus,times,any) for 2 complex
#define GB_MNAME _second
#define GB_COMPLEX
#include "GB_AxB_type_factory.c"
break ;
//----------------------------------------------------------------------
case GB_MIN_binop_code : // z = min(x,y)
//----------------------------------------------------------------------
// 50 semirings: (min,max,plus,times,any) for 10 real non-boolean
// MIN == TIMES == AND for boolean
#define GB_NO_BOOLEAN
#define GB_MNAME _min
#include "GB_AxB_type_factory.c"
break ;
//----------------------------------------------------------------------
case GB_MAX_binop_code : // z = max(x,y)
//----------------------------------------------------------------------
// 50 semirings: (min,max,plus,times,any) for 10 real non-boolean
// MAX == PLUS == OR for boolean
#define GB_NO_BOOLEAN
#define GB_MNAME _max
#include "GB_AxB_type_factory.c"
break ;
//----------------------------------------------------------------------
case GB_PLUS_binop_code : // z = x + y
//----------------------------------------------------------------------
// 56 semirings:
// 50: (min,max,plus,times,any) for 10 real non-boolean
// 6: (plus,times,any) for 2 complex types
// MAX == PLUS == OR for boolean
#define GB_NO_BOOLEAN
#define GB_MNAME _plus
#define GB_COMPLEX
#include "GB_AxB_type_factory.c"
break ;
//----------------------------------------------------------------------
case GB_MINUS_binop_code : // z = x - y
//----------------------------------------------------------------------
// 56 semirings:
// 50 semirings: (min,max,plus,times,any) for 10 real non-boolean
// 6: (plus,times,any) for 2 complex types
// MINUS == RMINUS == NE == ISNE == XOR for boolean
#define GB_NO_BOOLEAN
#define GB_MNAME _minus
#define GB_COMPLEX
#include "GB_AxB_type_factory.c"
break ;
//----------------------------------------------------------------------
case GB_RMINUS_binop_code : // z = y - x (reverse minus)
//----------------------------------------------------------------------
// 56 semirings:
// 50 semirings: (min,max,plus,times,any) for 10 real non-boolean
// 6: (plus,times,any) for 2 complex types
#define GB_NO_BOOLEAN
#define GB_MNAME _rminus
#define GB_COMPLEX
#include "GB_AxB_type_factory.c"
break ;
//----------------------------------------------------------------------
case GB_TIMES_binop_code : // z = x * y
//----------------------------------------------------------------------
// 56 semirings:
// 50 semirings: (min,max,plus,times,any) for 10 real non-boolean
// 6: (plus,times,any) for 2 complex types
#define GB_NO_BOOLEAN
#define GB_MNAME _times
#define GB_COMPLEX
#include "GB_AxB_type_factory.c"
break ;
//----------------------------------------------------------------------
case GB_DIV_binop_code : // z = x / y
//----------------------------------------------------------------------
// 56 semirings:
// 50 semirings: (min,max,plus,times,any) for 10 real non-boolean
// 6: (plus,times,any) for 2 complex types
// FIRST == DIV for boolean
#define GB_NO_BOOLEAN
#define GB_MNAME _div
#define GB_COMPLEX
#include "GB_AxB_type_factory.c"
break ;
//----------------------------------------------------------------------
case GB_RDIV_binop_code : // z = y / x (reverse division)
//----------------------------------------------------------------------
// 56 semirings:
// 50 semirings: (min,max,plus,times,any) for 10 real non-boolean
// 6: (plus,times,any) for 2 complex types
// SECOND == RDIV for boolean
#define GB_NO_BOOLEAN
#define GB_MNAME _rdiv
#define GB_COMPLEX
#include "GB_AxB_type_factory.c"
break ;
//----------------------------------------------------------------------
case GB_EQ_binop_code : // z = (x == y)
//----------------------------------------------------------------------
// 55 semirings: (and,or,xor,eq,any) * 11 types (all but complex)
#define GB_MNAME _eq
#include "GB_AxB_compare_factory.c"
break ;
//----------------------------------------------------------------------
case GB_NE_binop_code : // z = (x != y)
//----------------------------------------------------------------------
// 50 semirings: (and,or,xor,eq,any) * (10 real non-boolean types)
// MINUS == RMINUS == NE == ISNE == XOR for boolean
#define GB_NO_BOOLEAN
#define GB_MNAME _ne
#include "GB_AxB_compare_factory.c"
break ;
//----------------------------------------------------------------------
case GB_GT_binop_code : // z = (x > y)
//----------------------------------------------------------------------
// 55 semirings: (and,or,xor,eq,any) * 11 types (all but complex)
#define GB_MNAME _gt
#include "GB_AxB_compare_factory.c"
break ;
//----------------------------------------------------------------------
case GB_LT_binop_code : // z = (x < y)
//----------------------------------------------------------------------
// 55 semirings: (and,or,xor,eq,any) * 11 types (all but complex)
#define GB_MNAME _lt
#include "GB_AxB_compare_factory.c"
break ;
//----------------------------------------------------------------------
case GB_GE_binop_code : // z = (x >= y)
//----------------------------------------------------------------------
// 55 semirings: (and,or,xor,eq,any) * 11 types (all but complex)
#define GB_MNAME _ge
#include "GB_AxB_compare_factory.c"
break ;
//----------------------------------------------------------------------
case GB_LE_binop_code : // z = (x <= y)
//----------------------------------------------------------------------
// 55 semirings: (and,or,xor,eq,any) * 11 types (all but complex)
#define GB_MNAME _le
#include "GB_AxB_compare_factory.c"
break ;
//----------------------------------------------------------------------
case GB_PAIR_binop_code : // z = 1
//----------------------------------------------------------------------
// 13 semirings with PAIR: (not including ANY_PAIR)
// 12: (plus) for 10 real non-boolean and 2 complex
// 1: (xor) for boolean
#define GB_NO_MIN_MAX_ANY_TIMES_MONOIDS
#define GB_MULT_IS_PAIR_OPERATOR
#define GB_MNAME _pair
#define GB_COMPLEX
#include "GB_AxB_type_factory.c"
break ;
//----------------------------------------------------------------------
case GB_LOR_binop_code : // z = x || y
//----------------------------------------------------------------------
// 15 semirings:
// 10 semirings: plus_lor for 10 real non-boolean types
// 5 semirings: (lor,land,eq,lxor,any) for boolean
#define GB_NO_MIN_MAX_ANY_TIMES_MONOIDS
#define GB_MNAME _lor
#include "GB_AxB_type_factory.c"
break ;
//----------------------------------------------------------------------
case GB_LAND_binop_code : // z = x && y
//----------------------------------------------------------------------
// 15 semirings: same as LOR
#define GB_NO_MIN_MAX_ANY_TIMES_MONOIDS
#define GB_MNAME _land
#include "GB_AxB_type_factory.c"
break ;
//----------------------------------------------------------------------
case GB_LXOR_binop_code : // z = x != y
//----------------------------------------------------------------------
// 15 semirings: same as LOR
#define GB_NO_MIN_MAX_ANY_TIMES_MONOIDS
#define GB_MNAME _lxor
#include "GB_AxB_type_factory.c"
break ;
//----------------------------------------------------------------------
case GB_BOR_binop_code : // z = (x | y), bitwise or
//----------------------------------------------------------------------
// 16 semirings: (bor,band,bxor,bxnor) * (uint8,16,32,64)
#define GB_MNAME _bor
#include "GB_AxB_bitwise_factory.c"
break ;
//----------------------------------------------------------------------
case GB_BAND_binop_code : // z = (x & y), bitwise and
//----------------------------------------------------------------------
// 16 semirings: (bor,band,bxor,bxnor) * (uint8,16,32,64)
#define GB_MNAME _band
#include "GB_AxB_bitwise_factory.c"
break ;
//----------------------------------------------------------------------
case GB_BXOR_binop_code : // z = (x ^ y), bitwise xor
//----------------------------------------------------------------------
// 16 semirings: (bor,band,bxor,bxnor) * (uint8,16,32,64)
#define GB_MNAME _bxor
#include "GB_AxB_bitwise_factory.c"
break ;
//----------------------------------------------------------------------
case GB_BXNOR_binop_code : // z = ~(x ^ y), bitwise xnor
//----------------------------------------------------------------------
// 16 semirings: (bor,band,bxor,bxnor) * (uint8,16,32,64)
#define GB_MNAME _bxnor
#include "GB_AxB_bitwise_factory.c"
break ;
//----------------------------------------------------------------------
case GB_FIRSTI_binop_code : // z = first_i(A(i,k),y) == i
//----------------------------------------------------------------------
// 10 semirings: (min,max,times,plus,any) * (int32,int64)
#define GB_MNAME _firsti
#include "GB_AxB_positional_factory.c"
break ;
//----------------------------------------------------------------------
case GB_FIRSTI1_binop_code : // z = first_i1(A(i,k),y) == i+1
//----------------------------------------------------------------------
// 10 semirings: (min,max,times,plus,any) * (int32,int64)
#define GB_MNAME _firsti1
#include "GB_AxB_positional_factory.c"
break ;
//----------------------------------------------------------------------
case GB_FIRSTJ_binop_code : // z = first_j(A(i,k),y) == k
case GB_SECONDI_binop_code : // z = second_i(x,B(k,j)) == k
//----------------------------------------------------------------------
// 10 semirings: (min,max,times,plus,any) * (int32,int64)
// FIRSTJ and SECONDI are identical when used in a semiring
#define GB_MNAME _firstj
#include "GB_AxB_positional_factory.c"
break ;
//----------------------------------------------------------------------
case GB_FIRSTJ1_binop_code : // z = first_j1(A(i,k),y) == k+1
case GB_SECONDI1_binop_code : // z = second_i1(x,B(k,j)) == k+1
//----------------------------------------------------------------------
// 10 semirings: (min,max,times,plus,any) * (int32,int64)
// FIRSTJ1 and SECONDI1 are identical when used in a semiring
#define GB_MNAME _firstj1
#include "GB_AxB_positional_factory.c"
break ;
//----------------------------------------------------------------------
case GB_SECONDJ_binop_code : // z = second_j(x,B(i,j)) == j
//----------------------------------------------------------------------
// 10 semirings: (min,max,times,plus,any) * (int32,int64)
#define GB_MNAME _secondj
#include "GB_AxB_positional_factory.c"
break ;
//----------------------------------------------------------------------
case GB_SECONDJ1_binop_code : // z = second_j1(x,B(i,j)) == j+1
//----------------------------------------------------------------------
// 10 semirings: (min,max,times,plus,any) * (int32,int64)
#define GB_MNAME _secondj1
#include "GB_AxB_positional_factory.c"
break ;
default: ;
}
}
|