1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
|
//------------------------------------------------------------------------------
// GB_AxB_saxpy_generic_method: C=A*B, C<M>=A*B, or C<!M>=A*B
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// GB_AxB_saxpy_generic_method computes C=A*B, C<M>=A*B, or C<!M>=A*B.
// with arbitrary types and operators. C can have any sparsity pattern:
// hyper, sparse, bitmap, or full. For all cases, the four matrices C, M
// (if present), A, and B have the same format (by-row or by-column), or they
// represent implicitly transposed matrices with the same effect. This method
// does not handle the dot-product methods, which compute C=A'*B if A and B
// are held by column, or equivalently A*B' if both are held by row.
// This method uses GB_AxB_saxpy_generic_template.c to implement two
// meta-methods, each of which can contain further specialized methods (such as
// the fine/coarse x Gustavson/Hash, mask/no-mask methods in saxpy3):
// saxpy3: general purpose method, where C is sparse or hypersparse,
// via GB_AxB_saxpy3_template.c. SaxpyTasks holds the (fine/coarse x
// Gustavson/Hash) tasks constructed by GB_AxB_saxpy3_slice*.
// bitmap_saxpy: general purpose method, where C is bitmap or full, via
// GB_bitmap_AxB_saxpy_template.c. The method constructs its own
// tasks in workspace defined and freed in that template.
// C is not iso.
// This template is used to construct the following methods, all of which
// are called by GB_AxB_saxpy_generic:
// GB_AxB_saxpy3_generic_firsti64
// GB_AxB_saxpy3_generic_firstj64
// GB_AxB_saxpy3_generic_secondj64
// GB_AxB_saxpy3_generic_firsti32
// GB_AxB_saxpy3_generic_firstj32
// GB_AxB_saxpy3_generic_secondj32
// GB_AxB_saxpy3_generic_first
// GB_AxB_saxpy3_generic_second
// GB_AxB_saxpy3_generic_flipped
// GB_AxB_saxpy3_generic_unflipped
// GB_bitmap_AxB_saxpy_generic_firsti64
// GB_bitmap_AxB_saxpy_generic_firstj64
// GB_bitmap_AxB_saxpy_generic_secondj64
// GB_bitmap_AxB_saxpy_generic_firsti32
// GB_bitmap_AxB_saxpy_generic_firstj32
// GB_bitmap_AxB_saxpy_generic_secondj32
// GB_bitmap_AxB_saxpy_generic_first
// GB_bitmap_AxB_saxpy_generic_second
// GB_bitmap_AxB_saxpy_generic_flipped
// GB_bitmap_AxB_saxpy_generic_unflipped
//------------------------------------------------------------------------------
#include "GB_mxm.h"
#include "GB_ek_slice.h"
#include "GB_binop.h"
#include "GB_sort.h"
#include "GB_atomics.h"
#include "GB_ek_slice_search.c"
#include "GB_bitmap_assign_methods.h"
#include "GB_AxB_saxpy_generic.h"
GrB_Info GB_AXB_SAXPY_GENERIC_METHOD
(
GrB_Matrix C, // any sparsity
const GrB_Matrix M,
bool Mask_comp,
const bool Mask_struct,
const bool M_in_place, // ignored if C is bitmap
const GrB_Matrix A,
bool A_is_pattern,
const GrB_Matrix B,
bool B_is_pattern,
const GrB_Semiring semiring, // semiring that defines C=A*B
// for saxpy3 only:
GB_saxpy3task_struct *restrict SaxpyTasks, // NULL if C is bitmap
int ntasks,
int nfine,
int nthreads,
const int do_sort, // if true, sort in saxpy3
GB_Context Context
)
{
//--------------------------------------------------------------------------
// get operators, functions, workspace, contents of A, B, and C
//--------------------------------------------------------------------------
GrB_BinaryOp mult = semiring->multiply ;
GrB_Monoid add = semiring->add ;
GB_void *identity = (GB_void *) add->identity ;
ASSERT (mult->ztype == add->op->ztype) ;
ASSERT (mult->ztype == C->type) ;
GxB_binary_function fmult = mult->binop_function ; // NULL if positional
GxB_binary_function fadd = add->op->binop_function ;
GB_Opcode opcode = mult->opcode ;
size_t csize = C->type->size ;
size_t asize = A_is_pattern ? 0 : A->type->size ;
size_t bsize = B_is_pattern ? 0 : B->type->size ;
size_t xsize = mult->xtype->size ;
size_t ysize = mult->ytype->size ;
// scalar workspace: because of typecasting, the x/y types need not
// be the same as the size of the A and B types.
// FLIPXY false: aik = (xtype) A(i,k) and bkj = (ytype) B(k,j)
// FLIPXY true: aik = (ytype) A(i,k) and bkj = (xtype) B(k,j)
size_t aik_size = FLIPXY ? ysize : xsize ;
size_t bkj_size = FLIPXY ? xsize : ysize ;
GB_cast_function cast_A, cast_B ;
#if FLIPXY
{
// A is typecasted to y, and B is typecasted to x
cast_A = A_is_pattern ? NULL :
GB_cast_factory (mult->ytype->code, A->type->code) ;
cast_B = B_is_pattern ? NULL :
GB_cast_factory (mult->xtype->code, B->type->code) ;
}
#else
{
// A is typecasted to x, and B is typecasted to y
cast_A = A_is_pattern ? NULL :
GB_cast_factory (mult->xtype->code, A->type->code) ;
cast_B = B_is_pattern ? NULL :
GB_cast_factory (mult->ytype->code, B->type->code) ;
}
#endif
//--------------------------------------------------------------------------
// C = A*B via saxpy3 or bitmap method, function pointers, and typecasting
//--------------------------------------------------------------------------
// memcpy (&(Cx [pC]), &(Hx [i]), len*csize)
#define GB_CIJ_MEMCPY(pC,i,len) memcpy (GB_CX (pC), GB_HX (i), (len)*csize)
// atomic update not available for function pointers
#define GB_HAS_ATOMIC 0
// user-defined monoid update cannot be done with an OpenMP atomic
#define GB_HAS_OMP_ATOMIC 0
// no special cases (C is not iso)
#define GB_IS_ANY_MONOID 0
#define GB_IS_ANY_FC32_MONOID 0
#define GB_IS_ANY_FC64_MONOID 0
#define GB_IS_PLUS_FC32_MONOID 0
#define GB_IS_PLUS_FC64_MONOID 0
#define GB_IS_ANY_PAIR_SEMIRING 0
#define GB_IS_PAIR_MULTIPLIER 0
#define GB_ATYPE GB_void
#define GB_BTYPE GB_void
#define GB_ASIZE asize
#define GB_BSIZE bsize
// no vectorization
#define GB_PRAGMA_SIMD_VECTORIZE ;
// The monoid identity byte value is not used in saxpy3
#define GB_GENERIC
#define GB_HAS_IDENTITY_BYTE 0
#define GB_IDENTITY_BYTE (none)
// definitions for GB_AxB_saxpy_generic_template.c
#include "GB_AxB_saxpy3_template.h"
#if OP_IS_POSITIONAL
{
//----------------------------------------------------------------------
// generic semirings with positional mulitiply operators
//----------------------------------------------------------------------
GB_BURBLE_MATRIX (C, "(generic positional C=A*B) ") ;
// C always has type int64_t or int32_t. The monoid must be used via
// its function pointer. The positional multiply operator must be
// hard-coded since it has no function pointer. The numerical values
// and types of A and B are not accessed.
ASSERT (A_is_pattern) ;
ASSERT (B_is_pattern) ;
// aik = A(i,k), located in Ax [A_iso ? 0:pA], value not used
#define GB_A_IS_PATTERN 1
#define GB_GETA(aik,Ax,pA,A_iso) ;
// bkj = B(k,j), located in Bx [B_iso ? 0:pB], value not used
#define GB_B_IS_PATTERN 1
#define GB_GETB(bkj,Bx,pB,B_iso) ;
// Gx [pG] = A(i,k), located in Ax [A_iso ? 0:pA], value not used
#define GB_LOADA(Gx,pG,Ax,pA,A_iso) ;
// Gx [pG] = B(k,j), located in Bx [B_iso ? 0:pB], value not used
#define GB_LOADB(Gx,pG,Bx,pB,B_iso) ;
// define t for each task
#define GB_CIJ_DECLARE(t) GB_CTYPE t
// address of Cx [p]
#define GB_CX(p) (&Cx [p])
// Cx [p] = t
#define GB_CIJ_WRITE(p,t) Cx [p] = t
// address of Hx [i]
#define GB_HX(i) (&Hx [i])
// Hx [i] = t
#define GB_HX_WRITE(i,t) Hx [i] = t
// Cx [p] = Hx [i]
#define GB_CIJ_GATHER(p,i) Cx [p] = Hx [i]
// Cx [p] += Hx [i]
#define GB_CIJ_GATHER_UPDATE(p,i) fadd (GB_CX (p), GB_CX (p), GB_HX (i))
// Cx [p] += t
#define GB_CIJ_UPDATE(p,t) fadd (GB_CX (p), GB_CX (p), &t)
// Hx [i] += t
#define GB_HX_UPDATE(i,t) fadd (GB_HX (i), GB_HX (i), &t)
// the original multiplier op may have been flipped, but the offset
// is unchanged
int64_t offset = GB_positional_offset (mult->opcode, NULL) ;
#if OP_IS_INT64
{
#undef GB_CTYPE
#define GB_CTYPE int64_t
#undef GB_CSIZE
#define GB_CSIZE (sizeof (int64_t))
ASSERT (C->type == GrB_INT64) ;
ASSERT (csize == sizeof (int64_t)) ;
#if OP_IS_FIRSTI
{
// GB_FIRSTI_binop_code : // z = first_i(A(i,k),y) == i
// GB_FIRSTI1_binop_code : // z = first_i1(A(i,k),y) == i+1
#undef GB_MULT
#define GB_MULT(t, aik, bkj, i, k, j) t = i + offset
#include "GB_AxB_saxpy_generic_template.c"
}
#elif OP_IS_FIRSTJ
{
// GB_FIRSTJ_binop_code : // z = first_j(A(i,k),y) == k
// GB_FIRSTJ1_binop_code : // z = first_j1(A(i,k),y) == k+1
// GB_SECONDI_binop_code : // z = second_i(x,B(k,j)) == k
// GB_SECONDI1_binop_code : // z = second_i1(x,B(k,j))== k+1
#undef GB_MULT
#define GB_MULT(t, aik, bkj, i, k, j) t = k + offset
#include "GB_AxB_saxpy_generic_template.c"
}
#else
{
// GB_SECONDJ_binop_code : // z = second_j(x,B(k,j)) == j
// GB_SECONDJ1_binop_code : // z = second_j1(x,B(k,j))== j+1
#undef GB_MULT
#define GB_MULT(t, aik, bkj, i, k, j) t = j + offset
#include "GB_AxB_saxpy_generic_template.c"
}
#endif
}
#else
{
#undef GB_CTYPE
#define GB_CTYPE int32_t
#undef GB_CSIZE
#define GB_CSIZE (sizeof (int32_t))
ASSERT (C->type == GrB_INT32) ;
ASSERT (csize == sizeof (int32_t)) ;
#if OP_IS_FIRSTI
{
// GB_FIRSTI_binop_code : // z = first_i(A(i,k),y) == i
// GB_FIRSTI1_binop_code : // z = first_i1(A(i,k),y) == i+1
#undef GB_MULT
#define GB_MULT(t,aik,bkj,i,k,j) t = (int32_t) (i + offset)
#include "GB_AxB_saxpy_generic_template.c"
}
#elif OP_IS_FIRSTJ
{
// GB_FIRSTJ_binop_code : // z = first_j(A(i,k),y) == k
// GB_FIRSTJ1_binop_code : // z = first_j1(A(i,k),y) == k+1
// GB_SECONDI_binop_code : // z = second_i(x,B(k,j)) == k
// GB_SECONDI1_binop_code : // z = second_i1(x,B(k,j))== k+1
#undef GB_MULT
#define GB_MULT(t,aik,bkj,i,k,j) t = (int32_t) (k + offset)
#include "GB_AxB_saxpy_generic_template.c"
}
#else
{
// GB_SECONDJ_binop_code : // z = second_j(x,B(k,j)) == j
// GB_SECONDJ1_binop_code : // z = second_j1(x,B(k,j))== j+1
#undef GB_MULT
#define GB_MULT(t,aik,bkj,i,k,j) t = (int32_t) (j + offset)
#include "GB_AxB_saxpy_generic_template.c"
}
#endif
}
#endif
}
#else
{
//----------------------------------------------------------------------
// generic semirings with standard multiply operators
//----------------------------------------------------------------------
GB_BURBLE_MATRIX (C, "(generic C=A*B) ") ;
// aik = A(i,k), located in Ax [A_iso ? 0:pA]
#undef GB_A_IS_PATTERN
#define GB_A_IS_PATTERN 0
#undef GB_GETA
#define GB_GETA(aik,Ax,pA,A_iso) \
GB_void aik [GB_VLA(aik_size)] ; \
if (!A_is_pattern) \
{ \
cast_A (aik, Ax +((A_iso) ? 0:((pA)*asize)), asize) ; \
}
// bkj = B(k,j), located in Bx [B_iso ? 0:pB]
#undef GB_B_IS_PATTERN
#define GB_B_IS_PATTERN 0
#undef GB_GETB
#define GB_GETB(bkj,Bx,pB,B_iso) \
GB_void bkj [GB_VLA(bkj_size)] ; \
if (!B_is_pattern) \
{ \
cast_B (bkj, Bx +((B_iso) ? 0:((pB)*bsize)), bsize) ; \
}
// Gx [pG] = A(i,k), located in Ax [A_iso ? 0:pA], no typecasting
#undef GB_LOADA
#define GB_LOADA(Gx,pG,Ax,pA,A_iso) \
memcpy (Gx + ((pG)*asize), Ax +((A_iso) ? 0:((pA)*asize)), asize)
// Gx [pG] = B(k,j), located in Bx [B_iso ? 0:pB], no typecasting
#undef GB_LOADB
#define GB_LOADB(Gx,pG,Bx,pB,B_iso) \
memcpy (Gx + ((pG)*bsize), Bx +((B_iso) ? 0:((pB)*bsize)), bsize)
// define t for each task
#undef GB_CIJ_DECLARE
#define GB_CIJ_DECLARE(t) GB_void t [GB_VLA(csize)]
// address of Cx [p]
#undef GB_CX
#define GB_CX(p) (Cx +((p)*csize))
// Cx [p] = t
#undef GB_CIJ_WRITE
#define GB_CIJ_WRITE(p,t) memcpy (GB_CX (p), t, csize)
// address of Hx [i]
#undef GB_HX
#define GB_HX(i) (Hx +((i)*csize))
// Hx [i] = t
#undef GB_HX_WRITE
#define GB_HX_WRITE(i,t) memcpy (GB_HX (i), t, csize)
// Cx [p] = Hx [i]
#undef GB_CIJ_GATHER
#define GB_CIJ_GATHER(p,i) memcpy (GB_CX (p), GB_HX(i), csize)
// Cx [p] += Hx [i]
#undef GB_CIJ_GATHER_UPDATE
#define GB_CIJ_GATHER_UPDATE(p,i) fadd (GB_CX (p), GB_CX (p), GB_HX (i))
// Cx [p] += t
#undef GB_CIJ_UPDATE
#define GB_CIJ_UPDATE(p,t) fadd (GB_CX (p), GB_CX (p), t)
// Hx [i] += t
#undef GB_HX_UPDATE
#define GB_HX_UPDATE(i,t) fadd (GB_HX (i), GB_HX (i), t)
#undef GB_CTYPE
#define GB_CTYPE GB_void
#undef GB_CSIZE
#define GB_CSIZE csize
#if OP_IS_FIRST
{
// t = A(i,k)
ASSERT (B_is_pattern) ;
#undef GB_MULT
#define GB_MULT(t, aik, bkj, i, k, j) memcpy (t, aik, csize)
#include "GB_AxB_saxpy_generic_template.c"
}
#elif OP_IS_SECOND
{
// t = B(i,k)
ASSERT (A_is_pattern) ;
#undef GB_MULT
#define GB_MULT(t, aik, bkj, i, k, j) memcpy (t, bkj, csize)
#include "GB_AxB_saxpy_generic_template.c"
}
#elif FLIPXY
{
// t = B(k,j) * A(i,k)
ASSERT (fmult != NULL) ;
#undef GB_MULT
#define GB_MULT(t, aik, bkj, i, k, j) fmult (t, bkj, aik)
#include "GB_AxB_saxpy_generic_template.c"
}
#else
{
// t = A(i,k) * B(k,j)
ASSERT (fmult != NULL) ;
#undef GB_MULT
#define GB_MULT(t, aik, bkj, i, k, j) fmult (t, aik, bkj)
#include "GB_AxB_saxpy_generic_template.c"
}
#endif
}
#endif
return (GrB_SUCCESS) ;
}
|