1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
|
//------------------------------------------------------------------------------
// GB_bitmap_AxB_saxpy_A_bitmap_B_bitmap: C<#M>+=A*B, C bitmap, M any format
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// C is bitmap, A and B are bitmap/full. M has any format.
{
int64_t tid ;
#pragma omp parallel for num_threads(nthreads) schedule(dynamic,1) \
reduction(+:cnvals)
for (tid = 0 ; tid < ntasks ; tid++)
{
//----------------------------------------------------------------------
// get the task to compute C (I,J)
//----------------------------------------------------------------------
int64_t I_tid = tid / nI_tasks ;
int64_t J_tid = tid % nI_tasks ;
// I = istart:iend-1
int64_t istart = I_tid * GB_TILE_SIZE ;
int64_t iend = GB_IMIN (avlen, istart + GB_TILE_SIZE) ;
// J = jstart:jend-1
int64_t jstart = J_tid * GB_TILE_SIZE ;
int64_t jend = GB_IMIN (bvdim, jstart + GB_TILE_SIZE) ;
int64_t task_cnvals = 0 ;
//----------------------------------------------------------------------
// check if any entry in the M(I,J) mask permits any change to C(I,J)
//----------------------------------------------------------------------
#if GB_MASK_IS_SPARSE_OR_HYPER || GB_MASK_IS_BITMAP_OR_FULL
bool any_update_allowed = false ;
for (int64_t j = jstart ; j < jend && !any_update_allowed ; j++)
{
for (int64_t i = istart ; i < iend && !any_update_allowed ; i++)
{
//----------------------------------------------------------
// get pointer to C(i,j) and M(i,j)
//----------------------------------------------------------
int64_t pC = j * avlen + i ;
//----------------------------------------------------------
// check M(i,j)
//----------------------------------------------------------
#if GB_MASK_IS_SPARSE_OR_HYPER
// M is sparse or hypersparse
int8_t cb = Cb [pC] ;
bool mij = (cb & 2) ;
#elif GB_MASK_IS_BITMAP_OR_FULL
// M is bitmap or full
GB_GET_M_ij (pC) ;
#endif
if (Mask_comp) mij = !mij ;
if (!mij) continue ;
any_update_allowed = true ;
}
}
if (!any_update_allowed)
{
// C(I,J) cannot be modified at all; skip it
continue ;
}
#endif
//----------------------------------------------------------------------
// declare local storage for this task
//----------------------------------------------------------------------
// GB_ATYPE Ax_cache [GB_TILE_SIZE * GB_KTILE_SIZE] ;
// int8_t Ab_cache [GB_TILE_SIZE * GB_KTILE_SIZE] ;
bool Ab_any_in_row [GB_TILE_SIZE] ;
//----------------------------------------------------------------------
// C<#M>(I,J) += A(I,:) * B(:,J)
//----------------------------------------------------------------------
for (int64_t kstart = 0 ; kstart < avdim ; kstart += GB_KTILE_SIZE)
{
// K = kstart:kend-1
int64_t kend = GB_IMIN (avdim, kstart + GB_KTILE_SIZE) ;
//------------------------------------------------------------------
// TODO: load A(I,K) into local storage
//------------------------------------------------------------------
// For built-in semirings, load A(I,K) into local storage of size
// GB_TILE_SIZE * GB_KTILE_SIZE and transpose it. Load in the
// bitmap Ab if not NULL, and Ax if not NULL.
#if 0
for (int64_t k = kstart ; k < kend ; k++)
{
for (int64_t i = istart ; i < iend ; i++)
{
int64_t pA = i + k * avlen ;
int8_t ab = GBB (Ab, pA) ;
i_local = i - istart ;
k_local = k - kstart ;
Ab_cache [i_local * GB_KTILE_SIZE ...
}
}
#endif
//------------------------------------------------------------------
// Check for entries in each row of A(I,K)
//------------------------------------------------------------------
if (A_is_bitmap)
{
for (int i = 0 ; i < GB_TILE_SIZE ; i++)
{
Ab_any_in_row [i] = false ;
}
for (int64_t k = kstart ; k < kend ; k++)
{
for (int64_t i = istart ; i < iend ; i++)
{
int64_t pA = i + k * avlen ; // get pointer to A(i,k)
int8_t ab = Ab [pA] ;
// Ab_cache [(i-istart) * GB_KTILE_SIZE + (k-kstart)]
// = ab ;
Ab_any_in_row [i-istart] |= ab ;
}
}
}
//------------------------------------------------------------------
// C<#M>(I,J) += A(I,K) * B(K,J)
//------------------------------------------------------------------
for (int64_t j = jstart ; j < jend ; j++)
{
//--------------------------------------------------------------
// B is bitmap or full: check if any B(K,j) entry exists
//--------------------------------------------------------------
if (B_is_bitmap)
{
int b = 0 ;
for (int64_t k = kstart ; k < kend ; k++)
{
int64_t pB = k + j * bvlen ; // pointer to B(k,j)
b += Bb [pB] ;
}
if (b == 0)
{
// no entry exists in B(K,j)
continue ;
}
}
//--------------------------------------------------------------
// C<#M>(I,j) += A(I,K) * B(K,j)
//--------------------------------------------------------------
GB_GET_T_FOR_SECONDJ ;
for (int64_t i = istart ; i < iend ; i++)
{
//----------------------------------------------------------
// skip if A(i,K) has no entries
//----------------------------------------------------------
if (A_is_bitmap && !Ab_any_in_row [i - istart])
{
continue ;
}
//----------------------------------------------------------
// get C(i,j)
//----------------------------------------------------------
int64_t pC = i + j * avlen ;
//----------------------------------------------------------
// check M(i,j)
//----------------------------------------------------------
#if GB_MASK_IS_SPARSE_OR_HYPER
// M is sparse or hypersparse
int8_t cb = Cb [pC] ;
bool mij = (cb & 2) ;
if (Mask_comp) mij = !mij ;
if (!mij) continue ;
cb = (cb & 1) ;
#elif GB_MASK_IS_BITMAP_OR_FULL
// M is bitmap or full
GB_GET_M_ij (pC) ;
if (Mask_comp) mij = !mij ;
if (!mij) continue ;
int8_t cb = Cb [pC] ;
#else
// no mask
int8_t cb = Cb [pC] ;
#endif
//----------------------------------------------------------
// C(i,j) += A(i,K) * B(K,j)
//----------------------------------------------------------
if (cb == 0)
{
//------------------------------------------------------
// C(i,j) does not yet exist
//------------------------------------------------------
for (int64_t k = kstart ; k < kend ; k++)
{
int64_t pA = i + k * avlen ; // pointer to A(i,k)
int64_t pB = k + j * bvlen ; // pointer to B(k,j)
if (!GBB (Ab, pA)) continue ;
if (!GBB (Bb, pB)) continue ;
GB_GET_B_kj ; // get B(k,j)
GB_MULT_A_ik_B_kj ; // t = A(i,k)*B(k,j)
if (cb == 0)
{
// C(i,j) = A(i,k) * B(k,j)
GB_CIJ_WRITE (pC, t) ;
Cb [pC] = keep ;
cb = keep ;
task_cnvals++ ;
}
else
{
// C(i,j) += A(i,k) * B(k,j)
GB_CIJ_UPDATE (pC, t) ;
}
}
}
else
{
//------------------------------------------------------
// C(i,j) already exists
//------------------------------------------------------
#if !GB_IS_ANY_PAIR_SEMIRING
for (int64_t k = kstart ; k < kend ; k++)
{
int64_t pA = i + k * avlen ; // pointer to A(i,k)
int64_t pB = k + j * bvlen ; // pointer to B(k,j)
if (!GBB (Ab, pA)) continue ;
if (!GBB (Bb, pB)) continue ;
GB_GET_B_kj ; // get B(k,j)
GB_MULT_A_ik_B_kj ; // t = A(i,k)*B(k,j)
// C(i,j) += A(i,k) * B(k,j)
GB_CIJ_UPDATE (pC, t) ;
}
#endif
}
}
}
}
cnvals += task_cnvals ;
}
}
|