File: GB_bitmap_AxB_saxpy_A_sparse_B_bitmap_template.c

package info (click to toggle)
suitesparse-graphblas 7.4.0%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 67,112 kB
  • sloc: ansic: 1,072,243; cpp: 8,081; sh: 512; makefile: 506; asm: 369; python: 125; awk: 10
file content (995 lines) | stat: -rw-r--r-- 42,579 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
//------------------------------------------------------------------------------
// GB_bitmap_AxB_saxpy_A_sparse_B_bitmap: C<#M>+=A*B, C bitmap, M any format
//------------------------------------------------------------------------------

// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

//------------------------------------------------------------------------------

// C is bitmap or full. A is hyper/sparse, B is bitmap/full.

// if C is bitmap: no accumulator is used

// if C is full: C += A*B is computed with the accumulator identical to
// the monoid

{

    if (use_coarse_tasks)
    {

        //----------------------------------------------------------------------
        // C<#M> += A*B using coarse tasks
        //----------------------------------------------------------------------

        // number of columns in the workspace for each task
        #define GB_PANEL_SIZE 4

        if (B_iso)
        { 
            // No special cases needed.  GB_GETB handles the B iso case.
        }

        //----------------------------------------------------------------------
        // allocate workspace for each task
        //----------------------------------------------------------------------

        GB_WERK_PUSH (H_slice, ntasks, int64_t) ;
        if (H_slice == NULL)
        { 
            // out of memory
            GB_FREE_ALL ;
            return (GrB_OUT_OF_MEMORY) ;
        }

        int64_t hwork = 0 ;
        int tid ;
        for (tid = 0 ; tid < ntasks ; tid++)
        {
            int64_t jstart, jend ;
            GB_PARTITION (jstart, jend, bvdim, tid, ntasks) ;
            int64_t jtask = jend - jstart ;
            int64_t jpanel = GB_IMIN (jtask, GB_PANEL_SIZE) ;
            H_slice [tid] = hwork ;
            #if ( !GB_C_IS_BITMAP )
            // bitmap case always needs Hx workspace; full case only needs it
            // if jpanel > 1
            if (jpanel > 1)
            #endif
            { 
                hwork += jpanel ;
            }
        }

        //----------------------------------------------------------------------

        int64_t cvlenx = (GB_IS_ANY_PAIR_SEMIRING ? 0 : cvlen) * GB_CSIZE ;
        #if GB_C_IS_BITMAP
        Wf  = GB_MALLOC_WORK (hwork * cvlen, int8_t, &Wf_size) ;
        #endif
        Wcx = GB_MALLOC_WORK (hwork * cvlenx, GB_void, &Wcx_size) ;
        if ((GB_C_IS_BITMAP && Wf == NULL) || Wcx == NULL)
        { 
            // out of memory
            GB_FREE_ALL ;
            return (GrB_OUT_OF_MEMORY) ;
        }

        //----------------------------------------------------------------------
        // C<#M> += A*B
        //----------------------------------------------------------------------

        #if GB_C_IS_BITMAP
        #pragma omp parallel for num_threads(nthreads) schedule(dynamic,1) \
            reduction(+:cnvals)
        #else
        #pragma omp parallel for num_threads(nthreads) schedule(dynamic,1)
        #endif
        for (tid = 0 ; tid < ntasks ; tid++)
        {

            //------------------------------------------------------------------
            // determine the vectors of B and C for this coarse task
            //------------------------------------------------------------------

            int64_t jstart, jend ;
            GB_PARTITION (jstart, jend, bvdim, tid, ntasks) ;
            int64_t jtask = jend - jstart ;
            int64_t jpanel = GB_IMIN (jtask, GB_PANEL_SIZE) ;
            #if GB_C_IS_BITMAP
            int64_t task_cnvals = 0 ;
            #endif

            //------------------------------------------------------------------
            // get the workspace for this task
            //------------------------------------------------------------------

            // Hf and Hx workspace to compute the panel of C
            #if GB_C_IS_BITMAP
            int8_t *restrict Hf = Wf + (H_slice [tid] * cvlen) ;
            #endif
            #if ( !GB_IS_ANY_PAIR_SEMIRING )
            GB_CTYPE *restrict Hx = (GB_CTYPE *) (Wcx + H_slice [tid] * cvlenx);
            #endif

            //------------------------------------------------------------------
            // clear the panel
            //------------------------------------------------------------------

            #if GB_C_IS_BITMAP
            memset (Hf, 0, jpanel * cvlen) ;
            #endif

            //------------------------------------------------------------------
            // C<#M>(:,jstart:jend-1) += A * B(:,jstart:jend-1) by panel
            //------------------------------------------------------------------

            for (int64_t j1 = jstart ; j1 < jend ; j1 += jpanel)
            {

                //--------------------------------------------------------------
                // get the panel of np vectors j1:j2-1
                //--------------------------------------------------------------

                int64_t j2 = GB_IMIN (jend, j1 + jpanel) ;
                int64_t np = j2 - j1 ;

                //--------------------------------------------------------------
                // G = B(:,j1:j2-1), of size bvlen-by-np, in column major order
                //--------------------------------------------------------------

                int8_t *restrict Gb = (int8_t *) (Bb + (j1 * bvlen)) ;
                #if ( !GB_IS_ANY_PAIR_SEMIRING )
                GB_BTYPE *restrict Gx = (GB_BTYPE *)
                     (((GB_void *) (B->x)) +
                       (B_iso ? 0 : ((j1 * bvlen) * GB_BSIZE))) ;
                #endif

                //--------------------------------------------------------------
                // clear the panel H to compute C(:,j1:j2-1)
                //--------------------------------------------------------------

                #if ( !GB_C_IS_BITMAP )
                if (np == 1)
                { 
                    // Make H an alias to C(:,j1)
                    int64_t j = j1 ;
                    int64_t pC_start = j * cvlen ;    // get pointer to C(:,j)
                    Hx = Cx + pC_start ;
                }
                else
                { 
                    // Hx = identity
                    int64_t nc = np * cvlen ;
                    #if GB_HAS_IDENTITY_BYTE
                        memset (Hx, GB_IDENTITY_BYTE, nc * GB_CSIZE) ;
                    #else
                        for (int64_t i = 0 ; i < nc ; i++)
                        { 
                            Hx [i] = GB_IDENTITY ;
                        }
                    #endif
                }
                #endif

                #if GB_IS_PLUS_FC32_MONOID
                float  *restrict Hx_real = (float *) Hx ;
                float  *restrict Hx_imag = Hx_real + 1 ;
                #elif GB_IS_PLUS_FC64_MONOID
                double *restrict Hx_real = (double *) Hx ;
                double *restrict Hx_imag = Hx_real + 1 ;
                #endif

                //--------------------------------------------------------------
                // H += A*G for one panel
                //--------------------------------------------------------------

                #undef GB_B_kj_PRESENT
                #if GB_B_IS_BITMAP
                #define GB_B_kj_PRESENT(b) b
                #else
                #define GB_B_kj_PRESENT(b) 1
                #endif

                #undef GB_MULT_A_ik_G_kj
                #if GB_IS_PAIR_MULTIPLIER
                    // t = A(i,k) * B (k,j) is already #defined as 1
                    #define GB_MULT_A_ik_G_kj(gkj,jj)
                #else
                    // t = A(i,k) * B (k,j)
                    #define GB_MULT_A_ik_G_kj(gkj,jj)                       \
                        GB_CIJ_DECLARE (t) ;                                \
                        GB_MULT (t, aik, gkj, i, k, j1 + jj)
                #endif

                #undef GB_HX_COMPUTE
                #if GB_C_IS_BITMAP
                    #define GB_HX_COMPUTE(gkj,gb,jj)                        \
                    {                                                       \
                        /* H (i,jj) += A(i,k) * B(k,j) */                   \
                        if (GB_B_kj_PRESENT (gb))                           \
                        {                                                   \
                            /* t = A(i,k) * B (k,j) */                      \
                            GB_MULT_A_ik_G_kj (gkj, jj) ;                   \
                            if (Hf [pH+jj] == 0)                            \
                            {                                               \
                                /* H(i,jj) is a new entry */                \
                                GB_HX_WRITE (pH+jj, t) ; /* Hx(i,jj)=t */   \
                                Hf [pH+jj] = 1 ;                            \
                            }                                               \
                            else                                            \
                            {                                               \
                                /* H(i,jj) is already present */            \
                                /* Hx(i,jj)+=t */                           \
                                GB_HX_UPDATE (pH+jj, t) ;                   \
                            }                                               \
                        }                                                   \
                    }
                #else
                    #define GB_HX_COMPUTE(gkj,gb,jj)                        \
                    {                                                       \
                        /* H (i,jj) += A(i,k) * B(k,j) */                   \
                        if (GB_B_kj_PRESENT (gb))                           \
                        {                                                   \
                            /* t = A(i,k) * B (k,j) */                      \
                            GB_MULT_A_ik_G_kj (gkj, jj) ;                   \
                            /* Hx(i,jj)+=t */                               \
                            GB_HX_UPDATE (pH+jj, t) ;                       \
                        }                                                   \
                    }
                #endif

                switch (np)
                {

                    case 4 : 

                        for (int64_t kA = 0 ; kA < anvec ; kA++)
                        {
                            // get A(:,k)
                            const int64_t k = GBH (Ah, kA) ;
                            // get B(k,j1:j2-1)
                            #if GB_B_IS_BITMAP
                            const int8_t gb0 = Gb [k          ] ;
                            const int8_t gb1 = Gb [k +   bvlen] ;
                            const int8_t gb2 = Gb [k + 2*bvlen] ;
                            const int8_t gb3 = Gb [k + 3*bvlen] ;
                            if (!(gb0 || gb1 || gb2 || gb3)) continue ;
                            #endif
                            GB_GETB (gk0, Gx, k          , B_iso) ;
                            GB_GETB (gk1, Gx, k +   bvlen, B_iso) ;
                            GB_GETB (gk2, Gx, k + 2*bvlen, B_iso) ;
                            GB_GETB (gk3, Gx, k + 3*bvlen, B_iso) ;
                            // H += A(:,k)*B(k,j1:j2-1)
                            const int64_t pA_end = Ap [kA+1] ;
                            for (int64_t pA = Ap [kA] ; pA < pA_end ; pA++)
                            { 
                                const int64_t i = Ai [pA] ;
                                const int64_t pH = i * 4 ;
                                GB_GETA (aik, Ax, pA, A_iso) ;
                                GB_HX_COMPUTE (gk0, gb0, 0) ;
                                GB_HX_COMPUTE (gk1, gb1, 1) ;
                                GB_HX_COMPUTE (gk2, gb2, 2) ;
                                GB_HX_COMPUTE (gk3, gb3, 3) ;
                            }
                        }
                        break ;

                    case 3 : 

                        for (int64_t kA = 0 ; kA < anvec ; kA++)
                        {
                            // get A(:,k)
                            const int64_t k = GBH (Ah, kA) ;
                            // get B(k,j1:j2-1)
                            #if GB_B_IS_BITMAP
                            const int8_t gb0 = Gb [k          ] ;
                            const int8_t gb1 = Gb [k +   bvlen] ;
                            const int8_t gb2 = Gb [k + 2*bvlen] ;
                            if (!(gb0 || gb1 || gb2)) continue ;
                            #endif
                            GB_GETB (gk0, Gx, k          , B_iso) ;
                            GB_GETB (gk1, Gx, k +   bvlen, B_iso) ;
                            GB_GETB (gk2, Gx, k + 2*bvlen, B_iso) ;
                            // H += A(:,k)*B(k,j1:j2-1)
                            const int64_t pA_end = Ap [kA+1] ;
                            for (int64_t pA = Ap [kA] ; pA < pA_end ; pA++)
                            { 
                                const int64_t i = Ai [pA] ;
                                const int64_t pH = i * 3 ;
                                GB_GETA (aik, Ax, pA, A_iso) ;
                                GB_HX_COMPUTE (gk0, gb0, 0) ;
                                GB_HX_COMPUTE (gk1, gb1, 1) ;
                                GB_HX_COMPUTE (gk2, gb2, 2) ;
                            }
                        }
                        break ;

                    case 2 : 

                        for (int64_t kA = 0 ; kA < anvec ; kA++)
                        {
                            // get A(:,k)
                            const int64_t k = GBH (Ah, kA) ;
                            // get B(k,j1:j2-1)
                            #if GB_B_IS_BITMAP
                            const int8_t gb0 = Gb [k          ] ;
                            const int8_t gb1 = Gb [k +   bvlen] ;
                            if (!(gb0 || gb1)) continue ;
                            #endif
                            // H += A(:,k)*B(k,j1:j2-1)
                            GB_GETB (gk0, Gx, k          , B_iso) ;
                            GB_GETB (gk1, Gx, k +   bvlen, B_iso) ;
                            const int64_t pA_end = Ap [kA+1] ;
                            for (int64_t pA = Ap [kA] ; pA < pA_end ; pA++)
                            { 
                                const int64_t i = Ai [pA] ;
                                const int64_t pH = i * 2 ;
                                GB_GETA (aik, Ax, pA, A_iso) ;
                                GB_HX_COMPUTE (gk0, gb0, 0) ;
                                GB_HX_COMPUTE (gk1, gb1, 1) ;
                            }
                        }
                        break ;

                    case 1 : 

                        for (int64_t kA = 0 ; kA < anvec ; kA++)
                        {
                            // get A(:,k)
                            const int64_t k = GBH (Ah, kA) ;
                            // get B(k,j1:j2-1) where j1 == j2-1
                            #if GB_B_IS_BITMAP
                            const int8_t gb0 = Gb [k] ;
                            if (!gb0) continue ;
                            #endif
                            // H += A(:,k)*B(k,j1:j2-1)
                            GB_GETB (gk0, Gx, k, B_iso) ;
                            const int64_t pA_end = Ap [kA+1] ;
                            for (int64_t pA = Ap [kA] ; pA < pA_end ; pA++)
                            { 
                                const int64_t i = Ai [pA] ;
                                const int64_t pH = i ;
                                GB_GETA (aik, Ax, pA, A_iso) ;
                                GB_HX_COMPUTE (gk0, 1, 0) ;
                            }
                        }
                        break ;

                    default:;
                }

                #undef GB_HX_COMPUTE
                #undef GB_B_kj_PRESENT
                #undef GB_MULT_A_ik_G_kj

                //--------------------------------------------------------------
                // C<#M>(:,j1:j2-1) = H
                //--------------------------------------------------------------

                #if ( !GB_C_IS_BITMAP )
                if (np == 1)
                { 
                    // Hx is already aliased to Cx; no more work to do
                    continue ;
                }
                #endif

                for (int64_t jj = 0 ; jj < np ; jj++)
                {

                    //----------------------------------------------------------
                    // C<#M>(:,j) = H (:,jj)
                    //----------------------------------------------------------

                    int64_t j = j1 + jj ;
                    int64_t pC_start = j * cvlen ;  // get pointer to C(:,j)

                    for (int64_t i = 0 ; i < cvlen ; i++)
                    {
                        int64_t pC = pC_start + i ;     // pointer to C(i,j)
                        int64_t pH = i * np + jj ;      // pointer to H(i,jj)
                        #if GB_C_IS_BITMAP
                        if (!Hf [pH]) continue ;
                        Hf [pH] = 0 ;                   // clear the panel
                        int8_t cb = Cb [pC] ;
                        #endif

                        //------------------------------------------------------
                        // check M(i,j)
                        //------------------------------------------------------

                        #if GB_MASK_IS_SPARSE_OR_HYPER

                            // M is sparse or hypersparse
                            bool mij = ((cb & 2) != 0) ^ Mask_comp ;
                            if (!mij) continue ;
                            cb = (cb & 1) ;

                        #elif GB_MASK_IS_BITMAP_OR_FULL

                            // M is bitmap or full
                            GB_GET_M_ij (pC) ;
                            mij = mij ^ Mask_comp ;
                            if (!mij) continue ;

                        #endif

                        //------------------------------------------------------
                        // C(i,j) += H(i,jj)
                        //------------------------------------------------------

                        #if GB_C_IS_BITMAP
                        if (cb == 0)
                        { 
                            // C(i,j) = H(i,jj)
                            GB_CIJ_GATHER (pC, pH) ;
                            Cb [pC] = keep ;
                            task_cnvals++ ;
                        }
                        else
                        {
                            // Currently, the matrix C is a newly allocated
                            // matrix, not the C_in input matrix to GrB_mxm.
                            // As a result, this condition is not used.  It
                            // will be in the future when this method is
                            // modified to modify C in-place.
                            ASSERT (GB_DEAD_CODE) ;
                            // C(i,j) += H(i,jj)
                            GB_CIJ_GATHER_UPDATE (pC, pH) ;
                        }
                        #else
                        { 
                            // C(i,j) = H(i,jj)
                            GB_CIJ_GATHER_UPDATE (pC, pH) ;
                        }
                        #endif
                    }
                }
            }
            #if GB_C_IS_BITMAP
            cnvals += task_cnvals ;
            #endif
        }

        #undef GB_PANEL_SIZE

    }
    else if (use_atomics)
    {

        //----------------------------------------------------------------------
        // C<#M> += A*B using fine tasks and atomics
        //----------------------------------------------------------------------

        if (B_iso)
        { 
            // No special cases needed.  GB_GET_B_kj (bkj = B(k,j))
            // handles the B iso case.
        }

        int tid ;
        #if GB_C_IS_BITMAP
        #pragma omp parallel for num_threads(nthreads) schedule(dynamic,1) \
            reduction(+:cnvals)
        #else
        #pragma omp parallel for num_threads(nthreads) schedule(dynamic,1)
        #endif
        for (tid = 0 ; tid < ntasks ; tid++)
        {

            //------------------------------------------------------------------
            // determine the vector of B and C for this fine task
            //------------------------------------------------------------------

            // The fine task operates on C(:,j) and B(:,j).  Its fine task
            // id ranges from 0 to nfine_tasks_per_vector-1, and determines
            // which slice of A to operate on.

            int64_t j    = tid / nfine_tasks_per_vector ;
            int fine_tid = tid % nfine_tasks_per_vector ;
            int64_t kfirst = A_slice [fine_tid] ;
            int64_t klast = A_slice [fine_tid + 1] ;
            int64_t pB_start = j * bvlen ;      // pointer to B(:,j)
            int64_t pC_start = j * cvlen ;      // pointer to C(:,j)
            GB_GET_T_FOR_SECONDJ ;              // t = j or j+1 for SECONDJ*
            #if GB_C_IS_BITMAP
            int64_t task_cnvals = 0 ;
            #endif

            // for Hx Gustavason workspace: use C(:,j) in-place:
            #if ( !GB_IS_ANY_PAIR_SEMIRING )
            GB_CTYPE *restrict Hx = (GB_CTYPE *)
                (((GB_void *) Cx) + (pC_start * GB_CSIZE)) ;
            #endif
            #if GB_IS_PLUS_FC32_MONOID || GB_IS_ANY_FC32_MONOID
            float  *restrict Hx_real = (float *) Hx ;
            float  *restrict Hx_imag = Hx_real + 1 ;
            #elif GB_IS_PLUS_FC64_MONOID || GB_IS_ANY_FC64_MONOID
            double *restrict Hx_real = (double *) Hx ;
            double *restrict Hx_imag = Hx_real + 1 ;
            #endif

            //------------------------------------------------------------------
            // C<#M>(:,j) += A(:,k1:k2) * B(k1:k2,j)
            //------------------------------------------------------------------

            for (int64_t kk = kfirst ; kk < klast ; kk++)
            {

                //--------------------------------------------------------------
                // C<#M>(:,j) += A(:,k) * B(k,j)
                //--------------------------------------------------------------

                int64_t k = GBH (Ah, kk) ;      // k in range k1:k2
                int64_t pB = pB_start + k ;     // get pointer to B(k,j)
                #if GB_B_IS_BITMAP
                if (!GBB (Bb, pB)) continue ;   
                #endif
                int64_t pA = Ap [kk] ;
                int64_t pA_end = Ap [kk+1] ;
                GB_GET_B_kj ;                   // bkj = B(k,j)

                for ( ; pA < pA_end ; pA++)
                {

                    //----------------------------------------------------------
                    // get A(i,k) and C(i,j)
                    //----------------------------------------------------------

                    int64_t i = Ai [pA] ;       // get A(i,k) index
                    int64_t pC = pC_start + i ; // get C(i,j) pointer

                    //----------------------------------------------------------
                    // C<#M>(i,j) += A(i,k) * B(k,j)
                    //----------------------------------------------------------

                    #if ( !GB_C_IS_BITMAP )
                    { 

                        //------------------------------------------------------
                        // C is full: the monoid is always atomic
                        //------------------------------------------------------

                        GB_MULT_A_ik_B_kj ;     // t = A(i,k) * B(k,j)
                        GB_ATOMIC_UPDATE_HX (i, t) ;    // C(i,j) += t

                    }
                    #elif GB_MASK_IS_SPARSE_OR_HYPER
                    { 

                        //------------------------------------------------------
                        // M is sparse, and scattered into the C bitmap
                        //------------------------------------------------------

                        // finite-state machine in Cb [pC]:
                        // 0:   cij not present, mij zero
                        // 1:   cij present, mij zero (keep==1 for !M)
                        // 2:   cij not present, mij one
                        // 3:   cij present, mij one (keep==3 for M)
                        // 7:   cij is locked

                        int8_t cb ;
                        #if GB_HAS_ATOMIC
                        { 
                            // if C(i,j) is already present and can be modified
                            // (cb==keep), and the monoid can be done
                            // atomically, then do the atomic update.  No need
                            // to modify Cb [pC].
                            GB_ATOMIC_READ
                            cb = Cb [pC] ;          // grab the entry
                            if (cb == keep)
                            { 
                                #if !GB_IS_ANY_MONOID
                                GB_MULT_A_ik_B_kj ;     // t = A(i,k) * B(k,j)
                                GB_ATOMIC_UPDATE_HX (i, t) ;    // C(i,j) += t
                                #endif
                                continue ;          // C(i,j) has been updated
                            }
                        }
                        #endif

                        do  // lock the entry
                        { 
                            // do this atomically:
                            // { cb = Cb [pC] ;  Cb [pC] = 7 ; }
                            GB_ATOMIC_CAPTURE_INT8 (cb, Cb [pC], 7) ;
                        } while (cb == 7) ; // lock owner gets 0, 1, 2, or 3
                        if (cb == keep-1)
                        { 
                            // C(i,j) is a new entry
                            GB_MULT_A_ik_B_kj ;             // t = A(i,k)*B(k,j)
                            GB_ATOMIC_WRITE_HX (i, t) ;     // C(i,j) = t
                            task_cnvals++ ;
                            cb = keep ;                     // keep the entry
                        }
                        else if (cb == keep)
                        { 
                            // C(i,j) is already present
                            #if !GB_IS_ANY_MONOID
                            GB_MULT_A_ik_B_kj ;             // t = A(i,k)*B(k,j)
                            GB_ATOMIC_UPDATE_HX (i, t) ;    // C(i,j) += t
                            #endif
                        }
                        GB_ATOMIC_WRITE
                        Cb [pC] = cb ;                  // unlock the entry

                    }
                    #else
                    { 

                        //------------------------------------------------------
                        // M is not present, or bitmap/full
                        //------------------------------------------------------

                        // finite-state machine in Cb [pC]:
                        // 0:   cij not present; can be written
                        // 1:   cij present; can be updated
                        // 7:   cij is locked

                        #if GB_MASK_IS_BITMAP_OR_FULL
                        { 
                            // M is bitmap or full, and not in C bitmap.
                            // Do not modify C(i,j) if not permitted by the mask
                            GB_GET_M_ij (pC) ;
                            mij = mij ^ Mask_comp ;
                            if (!mij) continue ;
                        }
                        #endif

                        //------------------------------------------------------
                        // C(i,j) += A(i,j) * B(k,j)
                        //------------------------------------------------------

                        int8_t cb ;
                        #if GB_HAS_ATOMIC
                        { 
                            // if C(i,j) is already present (cb==1), and the
                            // monoid can be done atomically, then do the
                            // atomic update.  No need to modify Cb [pC].
                            GB_ATOMIC_READ
                            cb = Cb [pC] ;          // grab the entry
                            if (cb == 1)
                            { 
                                #if !GB_IS_ANY_MONOID
                                GB_MULT_A_ik_B_kj ;     // t = A(i,k) * B(k,j)
                                GB_ATOMIC_UPDATE_HX (i, t) ;    // C(i,j) += t
                                #endif
                                continue ;          // C(i,j) has been updated
                            }
                        }
                        #endif

                        do  // lock the entry
                        { 
                            // do this atomically:
                            // { cb = Cb [pC] ;  Cb [pC] = 7 ; }
                            GB_ATOMIC_CAPTURE_INT8 (cb, Cb [pC], 7) ;
                        } while (cb == 7) ; // lock owner gets 0 or 1
                        if (cb == 0)
                        { 
                            // C(i,j) is a new entry
                            GB_MULT_A_ik_B_kj ;             // t = A(i,k)*B(k,j)
                            GB_ATOMIC_WRITE_HX (i, t) ;     // C(i,j) = t
                            task_cnvals++ ;
                        }
                        else // cb == 1
                        { 
                            // C(i,j) is already present
                            #if !GB_IS_ANY_MONOID
                            GB_MULT_A_ik_B_kj ;             // t = A(i,k)*B(k,j)
                            GB_ATOMIC_UPDATE_HX (i, t) ;    // C(i,j) += t
                            #endif
                        }
                        GB_ATOMIC_WRITE
                        Cb [pC] = 1 ;               // unlock the entry

                    }
                    #endif

                }
            }
            #if GB_C_IS_BITMAP
            cnvals += task_cnvals ;
            #endif
        }

    }
    else
    {

        //----------------------------------------------------------------------
        // C<#M> += A*B using fine tasks and workspace, with no atomics
        //----------------------------------------------------------------------

        // Each fine task is given size-cvlen workspace to compute its result
        // in the first phase, W(:,tid) = A(:,k1:k2) * B(k1:k2,j), where k1:k2
        // is defined by the fine_tid of the task.  The workspaces are then
        // summed into C in the second phase.

        if (B_iso)
        { 
            // No special cases needed.  GB_GET_B_kj (bkj = B(k,j))
            // handles the B iso case.
        }

        //----------------------------------------------------------------------
        // allocate workspace
        //----------------------------------------------------------------------

        size_t workspace = cvlen * ntasks ;
        size_t cxsize = (GB_IS_ANY_PAIR_SEMIRING) ? 0 : GB_CSIZE ;
        #if GB_C_IS_BITMAP
        Wf  = GB_MALLOC_WORK (workspace, int8_t, &Wf_size) ;
        #endif
        Wcx = GB_MALLOC_WORK (workspace * cxsize, GB_void, &Wcx_size) ;
        if ((GB_C_IS_BITMAP && Wf == NULL) || Wcx == NULL)
        { 
            // out of memory
            GB_FREE_ALL ;
            return (GrB_OUT_OF_MEMORY) ;
        }

        //----------------------------------------------------------------------
        // first phase: W (:,tid) = A (:,k1:k2) * B (k2:k2,j) for each fine task
        //----------------------------------------------------------------------

        int tid ;
        #pragma omp parallel for num_threads(nthreads) schedule(dynamic,1)
        for (tid = 0 ; tid < ntasks ; tid++)
        {

            //------------------------------------------------------------------
            // determine the vector of B and C for this fine task
            //------------------------------------------------------------------

            // The fine task operates on C(:,j) and B(:,j).  Its fine task
            // id ranges from 0 to nfine_tasks_per_vector-1, and determines
            // which slice of A to operate on.

            int64_t j    = tid / nfine_tasks_per_vector ;
            int fine_tid = tid % nfine_tasks_per_vector ;
            int64_t kfirst = A_slice [fine_tid] ;
            int64_t klast = A_slice [fine_tid + 1] ;
            int64_t pB_start = j * bvlen ;      // pointer to B(:,j)
            int64_t pC_start = j * cvlen ;      // pointer to C(:,j), for bitmap
            int64_t pW_start = tid * cvlen ;    // pointer to W(:,tid)
            GB_GET_T_FOR_SECONDJ ;              // t = j or j+1 for SECONDJ*
            #if GB_C_IS_BITMAP
            int64_t task_cnvals = 0 ;
            #endif

            // for Hf and Hx Gustavason workspace: use W(:,tid):
            #if GB_C_IS_BITMAP
            int8_t *restrict Hf = Wf + pW_start ;
            #endif
            #if ( !GB_IS_ANY_PAIR_SEMIRING )
            GB_CTYPE *restrict Hx = (GB_CTYPE *) (Wcx + (pW_start * cxsize)) ;
            #endif
            #if GB_IS_PLUS_FC32_MONOID
            float  *restrict Hx_real = (float *) Hx ;
            float  *restrict Hx_imag = Hx_real + 1 ;
            #elif GB_IS_PLUS_FC64_MONOID
            double *restrict Hx_real = (double *) Hx ;
            double *restrict Hx_imag = Hx_real + 1 ;
            #endif

            //------------------------------------------------------------------
            // clear the panel
            //------------------------------------------------------------------

            #if GB_C_IS_BITMAP
            { 
                memset (Hf, 0, cvlen) ;
            }
            #else
            { 
                // set Hx to identity
                #if GB_HAS_IDENTITY_BYTE
                    memset (Hx, GB_IDENTITY_BYTE, cvlen * GB_CSIZE) ;
                #else
                    for (int64_t i = 0 ; i < cvlen ; i++)
                    { 
                        Hx [i] = GB_IDENTITY ;
                    }
                #endif
            }
            #endif

            //------------------------------------------------------------------
            // W<#M> = A(:,k1:k2) * B(k1:k2,j)
            //------------------------------------------------------------------

            for (int64_t kk = kfirst ; kk < klast ; kk++)
            {

                //--------------------------------------------------------------
                // W<#M>(:,tid) += A(:,k) * B(k,j)
                //--------------------------------------------------------------

                int64_t k = GBH (Ah, kk) ;      // k in range k1:k2
                int64_t pB = pB_start + k ;     // get pointer to B(k,j)
                #if GB_B_IS_BITMAP
                if (!GBB (Bb, pB)) continue ;   
                #endif
                int64_t pA = Ap [kk] ;
                int64_t pA_end = Ap [kk+1] ;
                GB_GET_B_kj ;                   // bkj = B(k,j)

                for ( ; pA < pA_end ; pA++)
                {

                    //----------------------------------------------------------
                    // get A(i,k)
                    //----------------------------------------------------------

                    int64_t i = Ai [pA] ;       // get A(i,k) index

                    //----------------------------------------------------------
                    // check M(i,j)
                    //----------------------------------------------------------

                    #if GB_MASK_IS_SPARSE_OR_HYPER
                    { 
                        // M is sparse or hypersparse
                        int64_t pC = pC_start + i ;
                        int8_t cb = Cb [pC] ;
                        bool mij = ((cb & 2) != 0) ^ Mask_comp ;
                        if (!mij) continue ;
                    }
                    #elif GB_MASK_IS_BITMAP_OR_FULL
                    { 
                        // M is bitmap or full
                        int64_t pC = pC_start + i ;
                        GB_GET_M_ij (pC) ;
                        mij = mij ^ Mask_comp ;
                        if (!mij) continue ;
                    }
                    #endif

                    //----------------------------------------------------------
                    // W<#M>(i) += A(i,k) * B(k,j)
                    //----------------------------------------------------------

                    #if GB_IS_ANY_PAIR_SEMIRING
                    { 
                        Hf [i] = 1 ;
                    }
                    #else
                    {
                        GB_MULT_A_ik_B_kj ;         // t = A(i,k)*B(k,j)
                        #if GB_C_IS_BITMAP
                        if (Hf [i] == 0)
                        { 
                            // W(i) is a new entry
                            GB_HX_WRITE (i, t) ;    // Hx(i) = t
                            Hf [i] = 1 ;
                        }
                        else
                        #endif
                        { 
                            // W(i) is already present
                            GB_HX_UPDATE (i, t) ;   // Hx(i) += t
                        }
                    }
                    #endif
                }
            }
        }

        //----------------------------------------------------------------------
        // second phase: C<#M> += reduce (W)
        //----------------------------------------------------------------------

        #if GB_C_IS_BITMAP
        #pragma omp parallel for num_threads(nthreads) schedule(dynamic,1) \
            reduction(+:cnvals)
        #else
        #pragma omp parallel for num_threads(nthreads) schedule(dynamic,1)
        #endif
        for (tid = 0 ; tid < ntasks ; tid++)
        {

            //------------------------------------------------------------------
            // determine the W and C for this fine task
            //------------------------------------------------------------------

            // The fine task operates on C(i1:i2,j) and W(i1:i2,w1:w2), where
            // i1:i2 is defined by the fine task id.  Its fine task id ranges
            // from 0 to nfine_tasks_per_vector-1.
            
            // w1:w2 are the updates to C(:,j), where w1:w2 =
            // [j*nfine_tasks_per_vector : (j+1)*nfine_tasks_per_vector-1].

            int64_t j    = tid / nfine_tasks_per_vector ;
            int fine_tid = tid % nfine_tasks_per_vector ;
            int64_t istart, iend ;
            GB_PARTITION (istart, iend, cvlen, fine_tid,
                nfine_tasks_per_vector) ;
            int64_t pC_start = j * cvlen ;          // pointer to C(:,j)
            int64_t wstart = j * nfine_tasks_per_vector ;
            int64_t wend = (j + 1) * nfine_tasks_per_vector ;
            #if GB_C_IS_BITMAP
            int64_t task_cnvals = 0 ;
            #endif

            // Hx = (typecasted) Wcx workspace, use Wf as-is
            #if ( !GB_IS_ANY_PAIR_SEMIRING )
            GB_CTYPE *restrict Hx = ((GB_CTYPE *) Wcx) ;
            #endif
            #if GB_IS_PLUS_FC32_MONOID
            float  *restrict Hx_real = (float *) Hx ;
            float  *restrict Hx_imag = Hx_real + 1 ;
            #elif GB_IS_PLUS_FC64_MONOID
            double *restrict Hx_real = (double *) Hx ;
            double *restrict Hx_imag = Hx_real + 1 ;
            #endif

            //------------------------------------------------------------------
            // C<#M>(i1:i2,j) += reduce (W (i2:i2, wstart:wend))
            //------------------------------------------------------------------

            for (int64_t w = wstart ; w < wend ; w++)
            {

                //--------------------------------------------------------------
                // C<#M>(i1:i2,j) += W (i1:i2,w)
                //--------------------------------------------------------------
            
                int64_t pW_start = w * cvlen ;      // pointer to W (:,w)

                for (int64_t i = istart ; i < iend ; i++)
                {

                    //----------------------------------------------------------
                    // get pointer and bitmap C(i,j) and W(i,w)
                    //----------------------------------------------------------

                    int64_t pW = pW_start + i ;     // pointer to W(i,w)
                    #if GB_C_IS_BITMAP
                    if (Wf [pW] == 0) continue ;    // skip if not present
                    #endif
                    int64_t pC = pC_start + i ;     // pointer to C(i,j)
                    #if GB_C_IS_BITMAP
                    int8_t cb = Cb [pC] ;           // bitmap status of C(i,j)
                    #endif

                    //----------------------------------------------------------
                    // M(i,j) already checked, but adjust Cb if M is sparse
                    //----------------------------------------------------------

                    #if GB_MASK_IS_SPARSE_OR_HYPER
                    { 
                        // M is sparse or hypersparse
                        cb = (cb & 1) ;
                    }
                    #endif

                    //----------------------------------------------------------
                    // C(i,j) += W (i,w)
                    //----------------------------------------------------------

                    #if GB_C_IS_BITMAP
                    if (cb == 0)
                    { 
                        // C(i,j) = W(i,w)
                        GB_CIJ_GATHER (pC, pW) ;
                        Cb [pC] = keep ;
                        task_cnvals++ ;
                    }
                    else
                    #endif
                    { 
                        // C(i,j) += W(i,w)
                        GB_CIJ_GATHER_UPDATE (pC, pW) ;
                    }
                }
            }
            #if GB_C_IS_BITMAP
            cnvals += task_cnvals ;
            #endif
        }
    }
}