1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
|
//------------------------------------------------------------------------------
// GB_bitmap_AxB_saxpy_template.c: C<#M>+=A*B when C is bitmap
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// GB_AxB_saxpy_sparsity determines the sparsity structure for C<M or !M>=A*B
// or C=A*B, and this template is used when C is bitmap. C can be modified
// in-place if the accum operator is the same as the monoid.
#undef GB_FREE_ALL
#define GB_FREE_ALL \
{ \
GB_FREE_WORK (&Wf, Wf_size) ; \
GB_FREE_WORK (&Wcx, Wcx_size) ; \
GB_WERK_POP (H_slice, int64_t) ; \
GB_WERK_POP (A_slice, int64_t) ; \
GB_WERK_POP (B_slice, int64_t) ; \
GB_WERK_POP (M_ek_slicing, int64_t) ; \
}
#undef GB_C_IS_BITMAP
#define GB_C_IS_BITMAP 1
{
//--------------------------------------------------------------------------
// declare workspace
//--------------------------------------------------------------------------
int8_t *restrict Wf = NULL ; size_t Wf_size = 0 ;
GB_void *restrict Wcx = NULL ; size_t Wcx_size = 0 ;
GB_WERK_DECLARE (H_slice, int64_t) ;
GB_WERK_DECLARE (A_slice, int64_t) ;
GB_WERK_DECLARE (B_slice, int64_t) ;
GB_WERK_DECLARE (M_ek_slicing, int64_t) ;
//--------------------------------------------------------------------------
// determine max # of threads to use
//--------------------------------------------------------------------------
GB_GET_NTHREADS_MAX (nthreads_max, chunk, Context) ;
//--------------------------------------------------------------------------
// get C, M, A, and B
//--------------------------------------------------------------------------
ASSERT (GB_IS_BITMAP (C)) ; // C is always bitmap
int8_t *restrict Cb = C->b ;
const int64_t cvlen = C->vlen ;
ASSERT (C->vlen == A->vlen) ;
ASSERT (C->vdim == B->vdim) ;
ASSERT (A->vdim == B->vlen) ;
int64_t cnvals = C->nvals ;
const int8_t *restrict Bb = B->b ;
const bool B_iso = B->iso ;
const int64_t bvlen = B->vlen ;
const int64_t bvdim = B->vdim ;
const int64_t bnz = GB_nnz_held (B) ;
const bool B_is_bitmap = GB_IS_BITMAP (B) ;
ASSERT (!GB_IS_SPARSE (B)) ;
ASSERT (!GB_IS_HYPERSPARSE (B)) ;
const int64_t *restrict Ap = A->p ;
const int64_t *restrict Ah = A->h ;
const int8_t *restrict Ab = A->b ;
const int64_t *restrict Ai = A->i ;
const bool A_iso = A->iso ;
const int64_t anvec = A->nvec ;
const int64_t avlen = A->vlen ;
const int64_t avdim = A->vdim ;
const bool A_jumbled = A->jumbled ;
const int64_t anz = GB_nnz_held (A) ;
const bool A_is_sparse = GB_IS_SPARSE (A) ;
const bool A_is_hyper = GB_IS_HYPERSPARSE (A) ;
const bool A_is_bitmap = GB_IS_BITMAP (A) ;
const bool A_is_sparse_or_hyper = A_is_sparse || A_is_hyper ;
const int64_t *restrict Mp = NULL ;
const int64_t *restrict Mh = NULL ;
const int8_t *restrict Mb = NULL ;
const int64_t *restrict Mi = NULL ;
const GB_void *restrict Mx = NULL ;
size_t msize = 0 ;
int64_t mnvec = 0 ;
int64_t mvlen = 0 ;
const bool M_is_hyper = GB_IS_HYPERSPARSE (M) ;
const bool M_is_sparse = GB_IS_SPARSE (M) ;
const bool M_is_sparse_or_hyper = M_is_hyper || M_is_sparse ;
const bool M_is_bitmap = GB_IS_BITMAP (M) ;
const bool M_is_full = GB_IS_FULL (M) ;
int M_nthreads = 0 ;
int M_ntasks = 0 ;
if (M != NULL)
{
ASSERT (C->vlen == M->vlen) ;
ASSERT (C->vdim == M->vdim) ;
Mp = M->p ;
Mh = M->h ;
Mb = M->b ;
Mi = M->i ;
Mx = (GB_void *) (Mask_struct ? NULL : (M->x)) ;
msize = M->type->size ;
mnvec = M->nvec ;
mvlen = M->vlen ;
GB_SLICE_MATRIX (M, 8, chunk) ;
// if M is sparse or hypersparse, scatter it into the C bitmap
if (M_is_sparse_or_hyper)
{
// Cb [pC] += 2 for each entry M(i,j) in the mask
GB_bitmap_M_scatter (C,
NULL, 0, GB_ALL, NULL, NULL, 0, GB_ALL, NULL,
M, Mask_struct, GB_ASSIGN, GB_BITMAP_M_SCATTER_PLUS_2,
M_ek_slicing, M_ntasks, M_nthreads, Context) ;
// the bitmap of C now contains:
// Cb (i,j) = 0: cij not present, mij zero
// Cb (i,j) = 1: cij present, mij zero
// Cb (i,j) = 2: cij not present, mij 1
// Cb (i,j) = 3: cij present, mij 1
}
}
#if !GB_A_IS_PATTERN
const GB_ATYPE *restrict Ax = (GB_ATYPE *) A->x ;
#endif
#if !GB_B_IS_PATTERN
const GB_BTYPE *restrict Bx = (GB_BTYPE *) B->x ;
#endif
#if !GB_IS_ANY_PAIR_SEMIRING
GB_CTYPE *restrict Cx = (GB_CTYPE *) C->x ;
#endif
//--------------------------------------------------------------------------
// select the method
//--------------------------------------------------------------------------
if (A_is_sparse_or_hyper)
{
//-----------------------------------------------------
// C = A * B
//-----------------------------------------------------
// bitmap . hyper bitmap
// bitmap . sparse bitmap
// bitmap . hyper full
// bitmap . sparse full
//-----------------------------------------------------
// C <M>= A * B
//-----------------------------------------------------
// bitmap any hyper bitmap
// bitmap any sparse bitmap
// bitmap bitmap/full hyper full
// bitmap bitmap/full sparse full
//-----------------------------------------------------
// C <!M>= A * B
//-----------------------------------------------------
// bitmap any hyper bitmap
// bitmap any sparse bitmap
// bitmap any hyper full
// bitmap any sparse full
// construct the tasks
ASSERT (GB_IS_BITMAP (B) || GB_IS_FULL (B)) ;
int nthreads, ntasks, nfine_tasks_per_vector ;
bool use_coarse_tasks, use_atomics ;
GB_AxB_saxpy4_tasks (&ntasks, &nthreads, &nfine_tasks_per_vector,
&use_coarse_tasks, &use_atomics, anz, bnz, bvdim, cvlen, Context) ;
if (!use_coarse_tasks)
{
// slice the matrix A for each team of fine tasks
GB_WERK_PUSH (A_slice, nfine_tasks_per_vector + 1, int64_t) ;
if (A_slice == NULL)
{
// out of memory
GB_FREE_ALL ;
return (GrB_OUT_OF_MEMORY) ;
}
GB_pslice (A_slice, Ap, anvec, nfine_tasks_per_vector, true) ;
}
if (M == NULL)
{
//------------------------------------------------------------------
// C = A*B, no mask, A sparse/hyper, B bitmap/full
//------------------------------------------------------------------
#define GB_NO_MASK 1
#define GB_MASK_IS_SPARSE_OR_HYPER 0
#define GB_MASK_IS_BITMAP_OR_FULL 0
#undef keep
#define keep 1
if (B_is_bitmap)
{
// A is sparse/hyper, B is bitmap, no mask
#undef GB_B_IS_BITMAP
#define GB_B_IS_BITMAP 1
#include "GB_bitmap_AxB_saxpy_A_sparse_B_bitmap_template.c"
}
else
{
// A is sparse/hyper, B is full, no mask
#undef GB_B_IS_BITMAP
#define GB_B_IS_BITMAP 0
#include "GB_bitmap_AxB_saxpy_A_sparse_B_bitmap_template.c"
}
#undef GB_MASK_IS_SPARSE_OR_HYPER
#undef GB_MASK_IS_BITMAP_OR_FULL
#undef GB_NO_MASK
}
else if (M_is_sparse_or_hyper)
{
//------------------------------------------------------------------
// C<M> or <!M> = A*B, M and A are sparse/hyper, B bitmap/full
//------------------------------------------------------------------
#define GB_NO_MASK 0
#define GB_MASK_IS_SPARSE_OR_HYPER 1
#define GB_MASK_IS_BITMAP_OR_FULL 0
#undef keep
const int8_t keep = (Mask_comp) ? 1 : 3 ;
if (B_is_bitmap)
{
// A is sparse/hyper, B is bitmap, M is sparse/hyper
#undef GB_B_IS_BITMAP
#define GB_B_IS_BITMAP 1
#include "GB_bitmap_AxB_saxpy_A_sparse_B_bitmap_template.c"
}
else
{
// A is sparse/hyper, B is full, M is sparse/hyper
#undef GB_B_IS_BITMAP
#define GB_B_IS_BITMAP 0
#include "GB_bitmap_AxB_saxpy_A_sparse_B_bitmap_template.c"
}
#undef GB_MASK_IS_SPARSE_OR_HYPER
#undef GB_MASK_IS_BITMAP_OR_FULL
}
else
{
//------------------------------------------------------------------
// C<M> or <!M> = A*B, M bitmap, A sparse, B bitmap
//------------------------------------------------------------------
#define GB_MASK_IS_SPARSE_OR_HYPER 0
#define GB_MASK_IS_BITMAP_OR_FULL 1
#undef keep
#define keep 1
if (B_is_bitmap)
{
// A is sparse/hyper, B is bitmap, M is bitmap/full
#undef GB_B_IS_BITMAP
#define GB_B_IS_BITMAP 1
#include "GB_bitmap_AxB_saxpy_A_sparse_B_bitmap_template.c"
}
else
{
// A is sparse/hyper, B is full, M is bitmap/full
#undef GB_B_IS_BITMAP
#define GB_B_IS_BITMAP 0
#include "GB_bitmap_AxB_saxpy_A_sparse_B_bitmap_template.c"
}
#undef GB_MASK_IS_SPARSE_OR_HYPER
#undef GB_MASK_IS_BITMAP_OR_FULL
#undef GB_NO_MASK
}
#undef GB_B_IS_BITMAP
}
else
{
//-----------------------------------------------------
// C = A * B
//-----------------------------------------------------
// bitmap . bitmap bitmap
// bitmap . full bitmap
// bitmap . bitmap full
// full . full full
//-----------------------------------------------------
// C <M>= A * B
//-----------------------------------------------------
// bitmap any bitmap bitmap
// bitmap any full bitmap
// bitmap bitmap/full bitmap full
// bitmap bitmap/full full full
//-----------------------------------------------------
// C <!M>= A * B
//-----------------------------------------------------
// bitmap any bitmap bitmap
// bitmap any full bitmap
// bitmap any bitmap full
// bitmap any full full
#define GB_TILE_SIZE 64
#define GB_KTILE_SIZE 8
double work = ((double) avlen) * ((double) bvlen) * ((double) bvdim) ;
int nthreads = GB_nthreads (work, chunk, nthreads_max) ;
int64_t nI_tasks = (bvdim == 0) ? 1 : (1 + (bvdim-1) / GB_TILE_SIZE) ;
int64_t nJ_tasks = (avlen == 0) ? 1 : (1 + (avlen-1) / GB_TILE_SIZE) ;
int64_t ntasks = nI_tasks * nJ_tasks ;
if (M == NULL)
{
//------------------------------------------------------------------
// C = A*B, no mask, A and B bitmap/full
//------------------------------------------------------------------
#define GB_MASK_IS_SPARSE_OR_HYPER 0
#define GB_MASK_IS_BITMAP_OR_FULL 0
#undef keep
#define keep 1
#include "GB_bitmap_AxB_saxpy_A_bitmap_B_bitmap_template.c"
#undef GB_MASK_IS_SPARSE_OR_HYPER
#undef GB_MASK_IS_BITMAP_OR_FULL
}
else if (M_is_sparse_or_hyper)
{
//------------------------------------------------------------------
// C<M> or <!M> = A*B, M sparse/hyper, A and B bitmap/full
//------------------------------------------------------------------
#define GB_MASK_IS_SPARSE_OR_HYPER 1
#define GB_MASK_IS_BITMAP_OR_FULL 0
#undef keep
const int8_t keep = (Mask_comp) ? 1 : 3 ;
#include "GB_bitmap_AxB_saxpy_A_bitmap_B_bitmap_template.c"
#undef GB_MASK_IS_SPARSE_OR_HYPER
#undef GB_MASK_IS_BITMAP_OR_FULL
}
else
{
//------------------------------------------------------------------
// C<M> or <!M> = A*B, all matrices bitmap/full
//------------------------------------------------------------------
#define GB_MASK_IS_SPARSE_OR_HYPER 0
#define GB_MASK_IS_BITMAP_OR_FULL 1
#undef keep
#define keep 1
#include "GB_bitmap_AxB_saxpy_A_bitmap_B_bitmap_template.c"
#undef GB_MASK_IS_SPARSE_OR_HYPER
#undef GB_MASK_IS_BITMAP_OR_FULL
}
}
C->nvals = cnvals ;
//--------------------------------------------------------------------------
// if M is sparse, clear it from the C bitmap
//--------------------------------------------------------------------------
if (M_is_sparse_or_hyper)
{
// Cb [pC] -= 2 for each entry M(i,j) in the mask
GB_bitmap_M_scatter (C,
NULL, 0, GB_ALL, NULL, NULL, 0, GB_ALL, NULL,
M, Mask_struct, GB_ASSIGN, GB_BITMAP_M_SCATTER_MINUS_2,
M_ek_slicing, M_ntasks, M_nthreads, Context) ;
}
//--------------------------------------------------------------------------
// free workspace
//--------------------------------------------------------------------------
GB_FREE_ALL ;
}
#undef GB_FREE_ALL
#undef GB_C_IS_BITMAP
|