1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
|
//------------------------------------------------------------------------------
// GB_bitmap_assign_C_template: iterate over a bitmap matrix C
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// The #include'ing file defines a GB_CIJ_WORK macro for the body of the loop,
// which operates on the entry C(iC,jC) at position Cx [pC] and Cb [pC]. The C
// matrix held in bitmap form. If the mask matrix is also a bitmap matrix or
// full matrix, the GB_GET_MIJ macro can compute the effective value of the
// mask for the C(iC,jC) entry.
// C must be bitmap or full. If M is accessed, it must also be bitmap or full.
#ifndef GB_GET_MIJ
#define GB_GET_MIJ(mij,pM) ;
#endif
{
switch (assign_kind)
{
//----------------------------------------------------------------------
// row assignment: C<M'>(iC,:), M is a column vector
//----------------------------------------------------------------------
case GB_ROW_ASSIGN :
{
// iterate over all of C(iC,:)
const int64_t iC = I [0] ;
const int nthreads = GB_nthreads (cvdim, chunk, nthreads_max) ;
int tid ;
#pragma omp parallel for num_threads(nthreads) schedule(static) \
reduction(+:cnvals)
for (tid = 0 ; tid < nthreads ; tid++)
{
int64_t jC_start, jC_end, task_cnvals = 0 ;
GB_PARTITION (jC_start, jC_end, cvdim, tid, nthreads) ;
for (int64_t jC = jC_start ; jC < jC_end ; jC++)
{
int64_t pC = iC + jC * cvlen ;
GB_GET_MIJ (mij, jC) ; // mij = Mask (jC)
GB_CIJ_WORK (pC) ; // operate on C(iC,jC)
}
cnvals += task_cnvals ;
}
}
break ;
//----------------------------------------------------------------------
// column assignment: C<M>(:,jC), M is a column vector
//----------------------------------------------------------------------
case GB_COL_ASSIGN :
{
// iterate over all of C(:,jC)
const int64_t jC = J [0] ;
const int64_t pC0 = jC * cvlen ;
const int nthreads = GB_nthreads (cvlen, chunk, nthreads_max) ;
int tid ;
#pragma omp parallel for num_threads(nthreads) schedule(static) \
reduction(+:cnvals)
for (tid = 0 ; tid < nthreads ; tid++)
{
int64_t iC_start, iC_end, task_cnvals = 0 ;
GB_PARTITION (iC_start, iC_end, cvlen, tid, nthreads) ;
for (int64_t iC = iC_start ; iC < iC_end ; iC++)
{
int64_t pC = iC + pC0 ;
GB_GET_MIJ (mij, iC) ; // mij = Mask (iC)
GB_CIJ_WORK (pC) ; // operate on C(iC,jC)
}
cnvals += task_cnvals ;
}
}
break ;
//----------------------------------------------------------------------
// GrB_assign: C<M>(I,J), M is a matrix the same size as C
//----------------------------------------------------------------------
#ifndef GB_NO_ASSIGN_CASE
case GB_ASSIGN :
{
// iterate over all of C(:,:).
#include "GB_bitmap_assign_C_whole_template.c"
}
break ;
#endif
//----------------------------------------------------------------------
// GxB_subassign: C(I,J)<M>, M is a matrix the same size as C(I,J)
//----------------------------------------------------------------------
#ifndef GB_NO_SUBASSIGN_CASE
case GB_SUBASSIGN :
{
// iterate over all of C(I,J)
#undef GB_IXJ_WORK
#define GB_IXJ_WORK(pC,pA) \
{ \
GB_GET_MIJ (mij, pA) ; /* mij = Mask (pA) */ \
GB_CIJ_WORK (pC) ; /* operate on C(iC,jC) */ \
}
#include "GB_bitmap_assign_IxJ_template.c"
}
break ;
#endif
default: ;
}
}
#undef GB_NO_ASSIGN_CASE
#undef GB_NO_SUBASSIGN_CASE
|