File: GB_bitmap_masker_template.c

package info (click to toggle)
suitesparse-graphblas 7.4.0%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 67,112 kB
  • sloc: ansic: 1,072,243; cpp: 8,081; sh: 512; makefile: 506; asm: 369; python: 125; awk: 10
file content (298 lines) | stat: -rw-r--r-- 11,385 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
//------------------------------------------------------------------------------
// GB_bitmap_masker_template:  phase2 for R = masker (C, M, Z), R is bitmap
//------------------------------------------------------------------------------

// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

//------------------------------------------------------------------------------

// Computes C<M>=Z or C<!M>=Z, returning the result in R, which is bitmap.
// The input matrix C is not modified.  Effectively, this computes R=C and then
// R<M>=Z or R<!M>=Z.  If the C_replace descriptor is enabled, then C has
// already been cleared, and is an empty (but non-NULL) matrix.

// phase2: computes R in a single pass

// C is sparse or hypersparse.  Z is bitmap or full.  R is bitmap.
// M has any sparsity structure.

        //      ------------------------------------------
        //      C       <!M> =       Z              R
        //      ------------------------------------------

        //      sparse  sparse      bitmap          bitmap
        //      sparse  sparse      full            bitmap

        //      sparse  bitmap      bitmap          bitmap
        //      sparse  bitmap      full            bitmap

        //      sparse  full        bitmap          bitmap
        //      sparse  full        full            bitmap

        //      ------------------------------------------
        //      C       <M> =        Z              R
        //      ------------------------------------------

        //      sparse  bitmap      bitmap          bitmap
        //      sparse  bitmap      full            bitmap

        //      sparse  full        bitmap          bitmap
        //      sparse  full        full            bitmap

// FUTURE:: add special cases for C==Z, C==M, and Z==M aliases

{
    
    int64_t p, rnvals = 0 ;

    ASSERT (R_sparsity == GxB_BITMAP) ;
    ASSERT (C_is_sparse || C_is_hyper) ;
    ASSERT (Z_is_bitmap || Z_is_full) ;

    //--------------------------------------------------------------------------
    // scatter C into the R bitmap
    //--------------------------------------------------------------------------

    ASSERT_MATRIX_OK (C, "C input to R_bitmap_masker", GB0) ;
    GB_SLICE_MATRIX (C, 8, chunk) ;

    #pragma omp parallel for num_threads(C_nthreads) schedule(dynamic,1) \
        reduction(+:rnvals)
    for (taskid = 0 ; taskid < C_ntasks ; taskid++)
    {
        int64_t kfirst = kfirst_Cslice [taskid] ;
        int64_t klast  = klast_Cslice  [taskid] ;
        for (int64_t k = kfirst ; k <= klast ; k++)
        {
            // find the part of C(:,k) for this task
            int64_t j = GBH (Ch, k) ;
            int64_t pC_start, pC_end ;
            GB_get_pA (&pC_start, &pC_end, taskid, k, kfirst,
                klast, pstart_Cslice, Cp, vlen) ;
            int64_t pR_start = j * vlen ;
            // traverse over C(:,j), the kth vector of C
            for (int64_t pC = pC_start ; pC < pC_end ; pC++)
            { 
                // R(i,j) = C(i,j)
                int64_t i = Ci [pC] ;
                int64_t pR = pR_start + i ;
                Rb [pR] = 1 ;
                rnvals++ ;
                #ifndef GB_ISO_MASKER
                memcpy (Rx + (pR)*rsize, Cx + (C_iso? 0:(pC)*rsize), rsize) ;
                #endif
            }
        }
    }

    R->nvals = rnvals ;
    ASSERT_MATRIX_OK (R, "R with C scattered", GB0) ;

    //--------------------------------------------------------------------------
    // R<M>=Z or R<!M>=Z
    //--------------------------------------------------------------------------

    if (M_is_sparse || M_is_hyper)
    {

        //----------------------------------------------------------------------
        // Method05: M is sparse or hypersparse, Z bitmap/full, R bitmap
        //----------------------------------------------------------------------

        //      ------------------------------------------
        //      C       <!M> =       Z              R
        //      ------------------------------------------

        //      sparse  sparse      bitmap          bitmap
        //      sparse  sparse      full            bitmap

        ASSERT (Mask_comp) ;

        //----------------------------------------------------------------------
        // scatter M into the R bitmap
        //----------------------------------------------------------------------

        GB_SLICE_MATRIX (M, 8, chunk) ;

        #pragma omp parallel for num_threads(M_nthreads) schedule(dynamic,1)
        for (taskid = 0 ; taskid < M_ntasks ; taskid++)
        {
            int64_t kfirst = kfirst_Mslice [taskid] ;
            int64_t klast  = klast_Mslice  [taskid] ;
            for (int64_t k = kfirst ; k <= klast ; k++)
            {
                // find the part of M(:,k) for this task
                int64_t j = GBH (Mh, k) ;
                int64_t pM_start, pM_end ;
                GB_get_pA (&pM_start, &pM_end, taskid, k, kfirst,
                    klast, pstart_Mslice, Mp, vlen) ;
                int64_t pR_start = j * vlen ;
                // traverse over M(:,j), the kth vector of M
                for (int64_t pM = pM_start ; pM < pM_end ; pM++)
                {
                    // mark R(i,j) if M(i,j) is true
                    bool mij = GB_mcast (Mx, pM, msize) ;
                    if (mij)
                    { 
                        int64_t i = Mi [pM] ;
                        int64_t p = pR_start + i ;
                        Rb [p] += 2 ;
                    }
                }
            }
        }

        //----------------------------------------------------------------------
        // R<!M>=Z, using M scattered into R
        //----------------------------------------------------------------------

        // Rb is marked as follows:
        //  0:  R(i,j) is not present, and M(i,j) is false
        //  1:  R(i,j) is present, and M(i,j) is false
        //  2:  R(i,j) is not present, and M(i,j) is true
        //  3:  R(i,j) is present, and M(i,j) is true

        // M is complemented, but shown uncomplemented in the table below since
        // that is how it is scattered into R.

        // Rb   R(i,j)  M(i,j)  Z(i,j)      modification to R(i,j)
        // 0    -       0       zij         R(i,j) = Z(i,j), new value, rnvals++
        // 0    -       0       -           do nothing
        // 1    rij     0       zij         R(i,j) = Z(i,j), overwrite
        // 1    rij     0       -           delete R(i,j), rnvals--
        // 2    -       1       zij         do nothing, set Rb to 0
        // 2    -       1       -           do nothing, set Rb to 0
        // 3    rij     1       zij         keep R(i,j), set Rb to 1
        // 3    rij     1       -           keep R(i,j), set Rb to 1

        #pragma omp parallel for num_threads(R_nthreads) schedule(static) \
            reduction(+:rnvals)
        for (p = 0 ; p < rnz ; p++)
        {
            int8_t r = Rb [p] ;
            int8_t z = GBB (Zb, p) ;
            switch (r)
            {
                case 0 :    // R(i,j) not present, M(i,j) false
                    if (z)
                    { 
                        // R(i,j) = Z(i,j), insert new value
                        #ifndef GB_ISO_MASKER
                        memcpy (Rx +(p)*rsize, Zx +(Z_iso? 0:(p)*rsize), rsize);
                        #endif
                        Rb [p] = 1 ;
                        rnvals++ ;
                    }
                    break ;

                case 1 :    // R(i,j) present, M(i,j) false
                    if (z)
                    { 
                        // R(i,j) = Z(i,j), update prior value
                        #ifndef GB_ISO_MASKER
                        memcpy (Rx +(p)*rsize, Zx +(Z_iso? 0:(p)*rsize), rsize);
                        #endif
                    }
                    else
                    { 
                        // delete R(i,j)
                        Rb [p] = 0 ;
                        rnvals-- ;
                    }
                    break ;

                case 2 :    // R(i,j) not present, M(i,j) true
                    Rb [p] = 0 ;
                    break ;

                case 3 :    // R(i,j) present, M(i,j) true
                    Rb [p] = 1 ;
                    break ;

                default: ;
            }
        }

    }
    else
    { 

        //----------------------------------------------------------------------
        // Method06: M and Z are bitmap or full, R is bitmap
        //----------------------------------------------------------------------

        //      ------------------------------------------
        //      C       <!M> =       Z              R
        //      ------------------------------------------

        //      sparse  bitmap      bitmap          bitmap
        //      sparse  bitmap      full            bitmap

        //      sparse  full        bitmap          bitmap
        //      sparse  full        full            bitmap

        //      ------------------------------------------
        //      C       <M> =        Z              R
        //      ------------------------------------------

        //      sparse  bitmap      bitmap          bitmap
        //      sparse  bitmap      full            bitmap

        //      sparse  full        bitmap          bitmap
        //      sparse  full        full            bitmap

        // Rb   R(i,j)  M(i,j)  Z(i,j)      modification to R(i,j)

        // 0    -       0       zij         do nothing
        // 0    -       0       -           do nothing
        // 1    rij     0       zij         do nothing
        // 1    rij     0       -           do nothing

        // 0    -       1       zij         R(i,j) = Z(i,j), rnvals++
        // 0    -       1       -           do nothing
        // 1    rij     1       zij         R(i,j) = Z(i,j), no change to rnvals
        // 1    rij     1       -           delete, rnvals--

        #pragma omp parallel for num_threads(R_nthreads) schedule(static) \
            reduction(+:rnvals)
        for (p = 0 ; p < rnz ; p++)
        {
            bool mij = GBB (Mb, p) && GB_mcast (Mx, p, msize) ;
            if (Mask_comp) mij = !mij ;
            if (mij)
            {
                int8_t z = GBB (Zb, p) ;
                int8_t r = Rb [p] ;
                if (r)
                {
                    if (z)
                    { 
                        // R(i,j) = Z(i,j), update, no change to rnvals
                        #ifndef GB_ISO_MASKER
                        memcpy (Rx +(p)*rsize, Zx +(Z_iso? 0:(p)*rsize), rsize);
                        #endif
                    }
                    else
                    { 
                        // delete R(i,j)
                        Rb [p] = 0 ;
                        rnvals-- ;
                    }
                }
                else if (z)
                { 
                    // R(i,j) = Z(i,j), new entry
                    #ifndef GB_ISO_MASKER
                    memcpy (Rx +(p)*rsize, Zx +(Z_iso? 0:(p)*rsize), rsize) ;
                    #endif
                    Rb [p] = 1 ;
                    rnvals++ ;
                }
            }
        }
    }

    R->nvals = rnvals ;
}