1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
|
//------------------------------------------------------------------------------
// GB_select_phase1: count entries in each vector for C=select(A,thunk)
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
//--------------------------------------------------------------------------
// get A and its slicing
//--------------------------------------------------------------------------
const int64_t *restrict kfirst_Aslice = A_ek_slicing ;
const int64_t *restrict klast_Aslice = A_ek_slicing + A_ntasks ;
const int64_t *restrict pstart_Aslice = A_ek_slicing + A_ntasks * 2 ;
const int64_t *restrict Ap = A->p ;
const int64_t *restrict Ah = A->h ;
const int64_t *restrict Ai = A->i ;
int64_t avlen = A->vlen ;
int64_t anvec = A->nvec ;
#if defined ( GB_ENTRY_SELECTOR )
//==========================================================================
// entry selector
//==========================================================================
ASSERT (GB_JUMBLED_OK (A)) ;
// The count of live entries kth vector A(:,k) is reduced to the kth scalar
// Cp(k). Each thread computes the reductions on roughly the same number
// of entries, which means that a vector A(:,k) may be reduced by more than
// one thread. The first vector A(:,kfirst) reduced by thread tid may be
// partial, where the prior thread tid-1 (and other prior threads) may also
// do some of the reductions for this same vector A(:,kfirst). The thread
// tid reduces all vectors A(:,k) for k in the range kfirst+1 to klast-1.
// The last vector A(:,klast) reduced by thread tid may also be partial.
// Thread tid+1, and following threads, may also do some of the reduces for
// A(:,klast).
//--------------------------------------------------------------------------
// get A
//--------------------------------------------------------------------------
const GB_ATYPE *restrict Ax = (GB_ATYPE *) A->x ;
size_t asize = A->type->size ;
int64_t avdim = A->vdim ;
ASSERT (GB_JUMBLED_OK (A)) ;
//--------------------------------------------------------------------------
// reduce each slice
//--------------------------------------------------------------------------
// each thread reduces its own part in parallel
int tid ;
#pragma omp parallel for num_threads(A_nthreads) schedule(dynamic,1)
for (tid = 0 ; tid < A_ntasks ; tid++)
{
// if kfirst > klast then thread tid does no work at all
int64_t kfirst = kfirst_Aslice [tid] ;
int64_t klast = klast_Aslice [tid] ;
Wfirst [tid] = 0 ;
Wlast [tid] = 0 ;
//----------------------------------------------------------------------
// reduce vectors kfirst to klast
//----------------------------------------------------------------------
for (int64_t k = kfirst ; k <= klast ; k++)
{
//------------------------------------------------------------------
// find the part of A(:,k) to be reduced by this thread
//------------------------------------------------------------------
int64_t j = GBH (Ah, k) ;
int64_t pA, pA_end ;
GB_get_pA (&pA, &pA_end, tid, k,
kfirst, klast, pstart_Aslice, Ap, avlen) ;
//------------------------------------------------------------------
// count entries in Ax [pA ... pA_end-1]
//------------------------------------------------------------------
int64_t cjnz = 0 ;
for ( ; pA < pA_end ; pA++)
{
ASSERT (Ai != NULL) ;
int64_t i = Ai [pA] ;
GB_TEST_VALUE_OF_ENTRY (keep, pA) ;
if (keep) cjnz++ ;
}
if (k == kfirst)
{
Wfirst [tid] = cjnz ;
}
else if (k == klast)
{
Wlast [tid] = cjnz ;
}
else
{
Cp [k] = cjnz ;
}
}
}
//--------------------------------------------------------------------------
// reduce the first and last vector of each slice using a single thread
//--------------------------------------------------------------------------
GB_ek_slice_merge1 (Cp, Wfirst, Wlast, A_ek_slicing, A_ntasks) ;
#else
//==========================================================================
// positional selector (tril, triu, diag, offdiag, resize, row*)
//==========================================================================
ASSERT (!GB_JUMBLED (A)) ;
//--------------------------------------------------------------------------
// tril, triu, diag, offdiag, resize: binary search in each vector
//--------------------------------------------------------------------------
int64_t k ;
#pragma omp parallel for num_threads(A_nthreads) schedule(guided)
for (k = 0 ; k < anvec ; k++)
{
//----------------------------------------------------------------------
// get A(:,k)
//----------------------------------------------------------------------
int64_t pA_start = GBP (Ap, k, avlen) ;
int64_t pA_end = GBP (Ap, k+1, avlen) ;
int64_t p = pA_start ;
int64_t cjnz = 0 ;
int64_t ajnz = pA_end - pA_start ;
bool found = false ;
if (ajnz > 0)
{
//------------------------------------------------------------------
// search for the entry A(i,k)
//------------------------------------------------------------------
int64_t ifirst = GBI (Ai, pA_start, avlen) ;
int64_t ilast = GBI (Ai, pA_end-1, avlen) ;
#if defined ( GB_ROWINDEX_SELECTOR )
int64_t i = -ithunk ;
#elif defined ( GB_ROWLE_SELECTOR ) || defined ( GB_ROWGT_SELECTOR )
int64_t i = ithunk ;
#else
// TRIL, TRIU, DIAG, OFFDIAG
int64_t j = GBH (Ah, k) ;
int64_t i = j-ithunk ;
#endif
if (i < ifirst)
{
// all entries in A(:,k) come after i
;
}
else if (i > ilast)
{
// all entries in A(:,k) come before i
p = pA_end ;
}
else if (ajnz == avlen)
{
// A(:,k) is dense
found = true ;
p += i ;
ASSERT (GBI (Ai, p, avlen) == i) ;
}
else
{
// binary search for A (i,k)
int64_t pright = pA_end - 1 ;
GB_SPLIT_BINARY_SEARCH (i, Ai, p, pright, found) ;
}
#if defined ( GB_TRIL_SELECTOR )
// keep p to pA_end-1
cjnz = pA_end - p ;
#elif defined ( GB_ROWGT_SELECTOR )
// if found, keep p+1 to pA_end-1
// else keep p to pA_end-1
if (found)
{
p++ ;
// now in both cases, keep p to pA_end-1
}
// keep p to pA_end-1
cjnz = pA_end - p ;
#elif defined ( GB_TRIU_SELECTOR ) \
|| defined ( GB_ROWLE_SELECTOR )
// if found, keep pA_start to p
// else keep pA_start to p-1
if (found)
{
p++ ;
// now in both cases, keep pA_start to p-1
}
// keep pA_start to p-1
cjnz = p - pA_start ;
#elif defined ( GB_DIAG_SELECTOR )
// if found, keep p
// else keep nothing
cjnz = found ;
if (!found) p = -1 ;
// if (cjnz >= 0) keep p, else keep nothing
#elif defined ( GB_OFFDIAG_SELECTOR ) || \
defined ( GB_ROWINDEX_SELECTOR )
// if found, keep pA_start to p-1 and p+1 to pA_end-1
// else keep pA_start to pA_end
cjnz = ajnz - found ;
if (!found)
{
p = pA_end ;
// now just keep pA_start to p-1; p+1 to pA_end is
// now empty
}
// in both cases, keep pA_start to p-1 and
// p+1 to pA_end-1. If the entry is not found, then
// p == pA_end, and all entries are kept.
#endif
}
//----------------------------------------------------------------------
// log the result for the kth vector
//----------------------------------------------------------------------
Zp [k] = p ;
Cp [k] = cjnz ;
}
//--------------------------------------------------------------------------
// compute Wfirst and Wlast for each task
//--------------------------------------------------------------------------
// Wfirst [0..A_ntasks-1] and Wlast [0..A_ntasks-1] are required for
// constructing C_start_slice [0..A_ntasks-1] in GB_selector.
for (int tid = 0 ; tid < A_ntasks ; tid++)
{
// if kfirst > klast then task tid does no work at all
int64_t kfirst = kfirst_Aslice [tid] ;
int64_t klast = klast_Aslice [tid] ;
Wfirst [tid] = 0 ;
Wlast [tid] = 0 ;
if (kfirst <= klast)
{
int64_t pA_start = pstart_Aslice [tid] ;
int64_t pA_end = GBP (Ap, kfirst+1, avlen) ;
pA_end = GB_IMIN (pA_end, pstart_Aslice [tid+1]) ;
if (pA_start < pA_end)
{
#if defined ( GB_TRIL_SELECTOR ) || \
defined ( GB_ROWGT_SELECTOR )
// keep Zp [kfirst] to pA_end-1
int64_t p = GB_IMAX (Zp [kfirst], pA_start) ;
Wfirst [tid] = GB_IMAX (0, pA_end - p) ;
#elif defined ( GB_TRIU_SELECTOR ) || \
defined ( GB_ROWLE_SELECTOR )
// keep pA_start to Zp [kfirst]-1
int64_t p = GB_IMIN (Zp [kfirst], pA_end) ;
Wfirst [tid] = GB_IMAX (0, p - pA_start) ;
#elif defined ( GB_DIAG_SELECTOR )
// task that owns the diagonal entry does this work
int64_t p = Zp [kfirst] ;
Wfirst [tid] = (pA_start <= p && p < pA_end) ? 1 : 0 ;
#elif defined ( GB_OFFDIAG_SELECTOR ) || \
defined ( GB_ROWINDEX_SELECTOR )
// keep pA_start to Zp [kfirst]-1
int64_t p = GB_IMIN (Zp [kfirst], pA_end) ;
Wfirst [tid] = GB_IMAX (0, p - pA_start) ;
// keep Zp [kfirst]+1 to pA_end-1
p = GB_IMAX (Zp [kfirst]+1, pA_start) ;
Wfirst [tid] += GB_IMAX (0, pA_end - p) ;
#endif
}
}
if (kfirst < klast)
{
int64_t pA_start = GBP (Ap, klast, avlen) ;
int64_t pA_end = pstart_Aslice [tid+1] ;
if (pA_start < pA_end)
{
#if defined ( GB_TRIL_SELECTOR ) || \
defined ( GB_ROWGT_SELECTOR )
// keep Zp [klast] to pA_end-1
int64_t p = GB_IMAX (Zp [klast], pA_start) ;
Wlast [tid] = GB_IMAX (0, pA_end - p) ;
#elif defined ( GB_TRIU_SELECTOR ) || \
defined ( GB_ROWLE_SELECTOR )
// keep pA_start to Zp [klast]-1
int64_t p = GB_IMIN (Zp [klast], pA_end) ;
Wlast [tid] = GB_IMAX (0, p - pA_start) ;
#elif defined ( GB_DIAG_SELECTOR )
// task that owns the diagonal entry does this work
int64_t p = Zp [klast] ;
Wlast [tid] = (pA_start <= p && p < pA_end) ? 1 : 0 ;
#elif defined ( GB_OFFDIAG_SELECTOR ) || \
defined ( GB_ROWINDEX_SELECTOR )
// keep pA_start to Zp [klast]-1
int64_t p = GB_IMIN (Zp [klast], pA_end) ;
Wlast [tid] = GB_IMAX (0, p - pA_start) ;
// keep Zp [klast]+1 to pA_end-1
p = GB_IMAX (Zp [klast]+1, pA_start) ;
Wlast [tid] += GB_IMAX (0, pA_end - p) ;
#endif
}
}
}
#endif
|