1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
|
//------------------------------------------------------------------------------
// GB_unop_transpose: C=op(cast(A')), transpose, typecast, and apply op
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
{
// Ax unused for some uses of this template
#include "GB_unused.h"
//--------------------------------------------------------------------------
// get A and C
//--------------------------------------------------------------------------
#ifndef GB_ISO_TRANSPOSE
const GB_ATYPE *restrict Ax = (GB_ATYPE *) A->x ;
GB_CTYPE *restrict Cx = (GB_CTYPE *) C->x ;
#endif
//--------------------------------------------------------------------------
// C = op (cast (A'))
//--------------------------------------------------------------------------
if (Workspaces == NULL)
{
//----------------------------------------------------------------------
// A and C are both full or both bitmap
//----------------------------------------------------------------------
// A is avlen-by-avdim; C is avdim-by-avlen
int64_t avlen = A->vlen ;
int64_t avdim = A->vdim ;
int64_t anz = avlen * avdim ; // ignore integer overflow
const int8_t *restrict Ab = A->b ;
int8_t *restrict Cb = C->b ;
ASSERT ((Cb == NULL) == (Ab == NULL)) ;
// TODO: it would be faster to do this by tiles, not rows/columns, for
// large matrices, but in most of the cases in GraphBLAS, A and C will
// be tall-and-thin or short-and-fat.
if (Ab == NULL)
{
//------------------------------------------------------------------
// A and C are both full (no work if A and C are iso)
//------------------------------------------------------------------
#ifndef GB_ISO_TRANSPOSE
int tid ;
#pragma omp parallel for num_threads(nthreads) schedule(static)
for (tid = 0 ; tid < nthreads ; tid++)
{
int64_t pC_start, pC_end ;
GB_PARTITION (pC_start, pC_end, anz, tid, nthreads) ;
for (int64_t pC = pC_start ; pC < pC_end ; pC++)
{
// get i and j of the entry C(i,j)
// i = (pC % avdim) ;
// j = (pC / avdim) ;
// find the position of the entry A(j,i)
// pA = j + i * avlen
// Cx [pC] = op (Ax [pA])
GB_CAST_OP (pC, ((pC/avdim) + (pC%avdim) * avlen)) ;
}
}
#endif
}
else
{
//------------------------------------------------------------------
// A and C are both bitmap
//------------------------------------------------------------------
int tid ;
#pragma omp parallel for num_threads(nthreads) schedule(static)
for (tid = 0 ; tid < nthreads ; tid++)
{
int64_t pC_start, pC_end ;
GB_PARTITION (pC_start, pC_end, anz, tid, nthreads) ;
for (int64_t pC = pC_start ; pC < pC_end ; pC++)
{
// get i and j of the entry C(i,j)
// i = (pC % avdim) ;
// j = (pC / avdim) ;
// find the position of the entry A(j,i)
// pA = j + i * avlen
int64_t pA = ((pC / avdim) + (pC % avdim) * avlen) ;
int8_t cij_exists = Ab [pA] ;
Cb [pC] = cij_exists ;
#ifndef GB_ISO_TRANSPOSE
if (cij_exists)
{
// Cx [pC] = op (Ax [pA])
GB_CAST_OP (pC, pA) ;
}
#endif
}
}
}
}
else
{
//----------------------------------------------------------------------
// A is sparse or hypersparse; C is sparse
//----------------------------------------------------------------------
const int64_t *restrict Ap = A->p ;
const int64_t *restrict Ah = A->h ;
const int64_t *restrict Ai = A->i ;
const int64_t anvec = A->nvec ;
int64_t *restrict Ci = C->i ;
if (nthreads == 1)
{
//------------------------------------------------------------------
// sequential method
//------------------------------------------------------------------
int64_t *restrict workspace = Workspaces [0] ;
for (int64_t k = 0 ; k < anvec ; k++)
{
// iterate over the entries in A(:,j)
int64_t j = GBH (Ah, k) ;
int64_t pA_start = Ap [k] ;
int64_t pA_end = Ap [k+1] ;
for (int64_t pA = pA_start ; pA < pA_end ; pA++)
{
// C(j,i) = A(i,j)
int64_t i = Ai [pA] ;
int64_t pC = workspace [i]++ ;
Ci [pC] = j ;
#ifndef GB_ISO_TRANSPOSE
// Cx [pC] = op (Ax [pA])
GB_CAST_OP (pC, pA) ;
#endif
}
}
}
else if (nworkspaces == 1)
{
//------------------------------------------------------------------
// atomic method
//------------------------------------------------------------------
int64_t *restrict workspace = Workspaces [0] ;
int tid ;
#pragma omp parallel for num_threads(nthreads) schedule(static)
for (tid = 0 ; tid < nthreads ; tid++)
{
for (int64_t k = A_slice [tid] ; k < A_slice [tid+1] ; k++)
{
// iterate over the entries in A(:,j)
int64_t j = GBH (Ah, k) ;
int64_t pA_start = Ap [k] ;
int64_t pA_end = Ap [k+1] ;
for (int64_t pA = pA_start ; pA < pA_end ; pA++)
{
// C(j,i) = A(i,j)
int64_t i = Ai [pA] ;
// do this atomically: pC = workspace [i]++
int64_t pC ;
GB_ATOMIC_CAPTURE_INC64 (pC, workspace [i]) ;
Ci [pC] = j ;
#ifndef GB_ISO_TRANSPOSE
// Cx [pC] = op (Ax [pA])
GB_CAST_OP (pC, pA) ;
#endif
}
}
}
}
else
{
//------------------------------------------------------------------
// non-atomic method
//------------------------------------------------------------------
int tid ;
#pragma omp parallel for num_threads(nthreads) schedule(static)
for (tid = 0 ; tid < nthreads ; tid++)
{
int64_t *restrict workspace = Workspaces [tid] ;
for (int64_t k = A_slice [tid] ; k < A_slice [tid+1] ; k++)
{
// iterate over the entries in A(:,j)
int64_t j = GBH (Ah, k) ;
int64_t pA_start = Ap [k] ;
int64_t pA_end = Ap [k+1] ;
for (int64_t pA = pA_start ; pA < pA_end ; pA++)
{
// C(j,i) = A(i,j)
int64_t i = Ai [pA] ;
int64_t pC = workspace [i]++ ;
Ci [pC] = j ;
#ifndef GB_ISO_TRANSPOSE
// Cx [pC] = op (Ax [pA])
GB_CAST_OP (pC, pA) ;
#endif
}
}
}
}
}
}
#undef GB_ISO_TRANSPOSE
|